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ABSTRACT 

Thi s  paper  applies recent  advances  in crystal l ine cohomology to the  classi- 

cal case of open elliptic modu la r  curves.  In so doing control  is gained over 

the  act ion of inert ia  in the  Galois representa t ions  a t t ached  to modu la r  

forms. Our  a im is to s t u d y  the  modula r  Galois representa t ions  a t t ached  

to au tomorph ic  forms mod  p of weight k > 2. We generalize to higher  

weight  k several  resul ts  which were previously accessible only in the  case 

of weight 2 where  jacobian  varieties can be invoked. Addi t ional ly  we 

reconsider Gross ' s  t heo rem on compan ion  forms in a crystal l ine context .  
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Introduct ion  

In this paper  we apply recent advances in crystalline cohomology to the classical 

case of elliptic modular forms. The main tool is Faltings's Comparison Theorem 

for p-adic ~tale and crystalline cohomology in the case of open varieties with 

smooth normal crossings compactifications ([7, Theorem 5.3]). This result is 

applied to open elliptic modular curves, the context of Faltings's earlier work [8]. 

Our aim is to study the modular Galois representations attached to automorphic 

forms mod p of weight k > 2. The restrictions on the results obtained are dictated 

by the restrictions in the crystalline theory. It  is helpful to make these explicit 

at the outset: 

I. The Comparison Theorem is only established in the case of good reduction, 

so we shall always require that  p not divide the level. Otherwise for k > 2 

the theory either does not exist or it is not as useful. 

II. With no restrictions on the weight k there is a Qp-theory. However in this 

paper we are exclusively interested in modular representations of Gal (Q/Q) 

arising from automorphic forms and hence require a Zp-theory. For this one 

must impose the condition k < p. At the limiting case k = p some remnants 

of the theory should remain, see [1]. 

We begin with the foundations. Fix a level N and a weight k _> 2. Denote 

by Sk(FI (N)  the space of cusp forms of weight k for F I ( N )  and by T the Hecke 

algebra acting on this space. We first show that  for a maximal ideal m C_ T 

of residue characteristic p > k with (p, N) = 1 the modular Galois representa- 

tion Pin: Ga l (Q/Q)  * GL(2,Fp) is crystalline with the weights 0 and (k - 1) 

each occurring with multiplicity one. We furthermore show that  in this case the 

Comparison Theorem between p-adic ~tale and crystalline cohomology is Hecke- 

equivariant. The equivariance follows easily from functorial properties except in 

the case of Tp, so it is here that  all our efforts are concentrated. 

The first application of these foundations is the essentially immediate result 

of Multiplicity One for maximal ideals m C T of residue characteristic p > k, 

p /~N,  such that  the associated modular Galois representation Pm is irreducible 

(Theorem 2.1). In case Pm is reducible crystalline methods show only that  

Pm = aX k-1 •/3 with c~,/3 characters of Gal (T /Q)  unramified outside N and 

~: the p-cyclotomic character. We next classify these reducible representations 

Pm occurring in cusp forms of type (N, k). Suppose m c_ T with Pm reducible 

is a new maximal ideal in the sense that  Pm does not occur in cusp forms of 
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any level properly dividing N. Then if p > k + 1 we prove that  m arises from 

an Eisenstein series of type (N, k), cf. Theorem 3.38. To prove these results, 

we first use geometric methods to construct Eisenstein series E (a ,  t3) attached 

to two Dirichlet characters a and ~. For a reducible pin the Eichler-Shimura 

relations give the same Te-eigenvalues as an Eisenstien series E(a, /3)  and the 

crystalline theory shows that  the Tp-eigenvalue is the same as that  of E(a, /3) .  

So we have to analyze the possible Ue-eigenvalues for giN. This study of bad 

reduction occupies much of Section 3 and relies on both the Picard-Lefschetz 

theory for semi-stable reduction and the work of Katz-Mazur .  

Having classified m with Pm reducible we turn our at tention to Multiplic- 

ity One in the Eisenstein case in Section 4. We show in a special case that  

Multiplicity One holds in the Eisenstein case for higher weight k. The case we 

can treat  is of prime level and is the analogous case in higher weight to that  

considered by Mazur [14] in the case of weight 2. It  should be pointed out that  

Multiplicity One in the Eisenstein case may well be false in general; cf. the 

theorem of Kurihara [12]. 

Lastly we reconsider the theorem of Gross [9] on the existence of companion 

forms.  Gross proved this theorem by reducing to weight 2 and there studying 

bad reduction. We work in weight k in a case of good reduction by crystalline 

methods. This proof is unlike those of the other results in the paper. Whereas 

our other applications require only the general results on the crystalline cohomol- 

ogy of modular curves found in Section 1, here one really has to compute with 

Frobenius in crystalline cohomology. We know of no other similar applications 

of crystalline methods to Shimura varieties. But the topic is certainly in the air. 

Coleman and Voloch [3] have another new proof of Gross's Theorem which like 

ours does not use Multiplicity One. Moreover their techniques yield results in 

the case p = k whereas our crystalline methods do not. 

1. Hecke operators in crystalline cohomology 

To set notation, fix a level N > 3 and denote by F(N)  C_ SL(2, Z) the subgroup 

of matrices which are congruent to the identity modulo N. The open modular 

curve Y(N)  corresponding to F(N)  classifies elliptic curves with full level N- 

structure. There is then a universal elliptic curve ~: E * Y = Y(N) .  By 

adding finitely many cusps to Y(N)  we obtain a complete curve X(N) .  The 

universal elliptic curve E extends to a semi-abelian variety over X(N) ,  giving 
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rise to the semi-stable compactification ~: E * X = X(N). Everything is 

defned over Z[1/N, e 2ri/g] or over the extension L of Qp generated by the N t h  

roots of unity. 

Fix a prime p, (p, N) = 1, and work over the field L. Set V = R17r.,~t(Zp). 

Then V is an ~tale sheaf on Y @ L. View the structure sheaf O as a crystalline 

sheaf on E and set C = R17r.,crys(O). Then in the terminology of [7] we have 

£ E A4F~0,1](Y). As ~ is logarithmically smooth, the crystalline sheaf £ is 

associated to the ~tale sheaf V by [7, Theorem 6.2]. Hence, functorially for an 

integer k > 2, Symmk-2(C) e A/I.T'~0,k_2I(Y ) is associated to Symmk-2(V).  

From [7, Theorem 5.3] it then follows that  for p > k Hcl~y~(Y, Symmk-2(£) )  is 

the F-crystal  corresponding to the dual of H~t(Yz, Symmk-2(V)).  A similar 

statement holds for H ¢ and Hl~r = Image (g,  1. • H1). 

The crystal 1 Hc~y~(Y, Symmk-2(C)) has weights 0 and ( k -  1) by the arguments 

of [8]. Namely we show that  in the de Rham complex 

Symmk-2(E)  • Symmk-2(£)  ® ~/l(cusps) 

the associated graded pieces gPF are acyclic for 0 < i < k -  1. Let w be the bundle 

- 1 The connection of differentials on the universal elliptic curve, so w = 7r.fl~/x. 
on $ induces an ®x-linear map 

g r ~ ( C )  = w * g r ° ( ~ )  ® ~~I(cHsps) : 0,1 ®-1 ® ~'~l(cllsps). 

This map is given by the Kodaira-Spencer class n: w ®2 ~ ,  ~-~l(ctlsps) and is 

thus itself an isomorphism. This is the assertion for k = 3; other k then follow 

similarly by linear algebra. Note that there is no problem with factorials n!'s etc. 

as long as k - 2 < p. Also 

F k-1 ---- M K r ( N ) )  = r ( x , ~  (k-~) ® al(cusps)), 

where Mk(F(N))  denotes modular forms for F(N)  of weight k. Furthermore 

F°/F k-1 =~ Sk(F(N))" ~= Hi(X, WE ~2-k) 

with Sk(F(N)) = F(X, WE °(k-2) ®il l )  denoting the space of cusp forms of weight k 

for F(N).  Again similar statements hold for H, 1 and Hpl~r = Image (H! 1 , H1). 

1 = Sk(F(N)).  Of course for the filtration on Hp~r(Yr, Symm k-2(C)) one has F k-1 " 

Various dualities are respected. 
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Suppose F C_ SL(2, Z) is a congruence subgroup with F _D F(N) .  The open 

Riemann surface Y(F) is the quotient H /F  of the Poincar6 upper half plane 

H. Correspondingly X(F)  = H/F  U {cusps}. The moduli space Y(F) and its 

compactification X(F)  can be defined over a number field contained in Q(e 2~/N). 

Frequently the most natural  model for X(F)  wilt be over Q(e 2~i/N ). Our pr imary 

example will be 

c d cSL(2, Z ) l c - O m o d N ,  a - d = l m o d N  . 

In this case X(F)  = X I ( N )  and Y(F) = YI(N) can be defined over Q. However 

a bet ter  model is the one over Q(e 2"i/N) associated to the "balanced" F I ( N )  

moduli problem. In general let K be the completion of a field of definition of 

X(F)  at a prime above p. The p-adic sheaf Symmk-2(V)  on Y(N)  has a natural  

F / F ( N )  action. A general foundational comment is required here. We want 

to view Y(F) as the quotient Y ( N ) / ( r / r ( N ) )  Unfortunately, if r/r(N) has 

fixed points on Y(N)  it is necessary to use either stacks or an auxiliary level M 

structure in order to do this. We will write proofs throughout for the case that  

F has no elliptic elements, omitting the routine modifications in case there are 

fixed points. The only technicality is that  we will want to use Poincar6 or Serre 

duality at various places. For this we need p prime to the order of the stabilizers 

of any fixed points. This can be accomplished, for example, either by assuming 

p _> 5 or working with F I ( N )  for N > 3. 

We obtain a sheaf on the quotient Y(F) = Y ( N ) / ( r / r ( N ) )  and if k > 2 

H 1 (Y(F)~,  Symm k-2 (V)) = H 1 (Y(N)~,  Symm k-2 (V)) r / r (g) .  

Hence we can pass from results established for X = X ( N )  and Y = Y(N)  to 

results for congruence subgroups X(F)  and Y(F) with F D F(N).  We summarize 

as follows: 

THEOREM 1.1: Suppose N _> 3 and F _D F(N)  is a congruence subgroup. 

The moduli curves Y(F) and X(F)  are defined over a number  field contained in 

Q(e 2~/y)  ; let K denote the completion of this number  iield at a prime above 

p XN. Suppose k > p. Then the Gal (K/K)-representation 

Y = H~r(Y(F)~,  Symm k-2(V)) 

is crystalline. The F-crystal corresponding to the dual of V has a canonical 
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Frobenius filtration 

M : F 0 D F k-1 D 0 

with r k - '  ~- Sk(r) and Y ° / F  ~ - '  : s ~ r * ~  ( ) . 

As we have seen, the crystal H~rys(Y, Symmk-2(g))  corresponds to the dual of 

the Gal(L/L)-representation Hlt(YT, Symmk-2(V)) for p > k. As usual similar 

statements hold for H~ and Hpl~r : Image (HI * H1). We consider the case 

Y : Y I ( N ) / Q  and assert that this relation preserves Hecke operators. 

The Hecke correspondences here are from X to itself. We now define these 

correspondences. Recall that  the moduli space X classifies pairs (E, x) where E 

is a generalized elliptic curve and x: Z / N Z  ~ E is a point of exact order N. For 

a prime r the correspondence % C_ X x X is defined by 

pr2(• .  ((E, x) × X)) : E ( ~ E ,  ~x), 

where ~a ranges over the (r + 1) isogenies of degree r with source E. If the prime 

r divides N then the correspondence H~ C_ X x X is defined by 

pr2(m.  ((E, x) × X)) : Z ( ~ E ,  ~x), 
qa 

where ~a ranges over the r isogenies of degree r with source E whose kernels have 

trivial intersection with the subgroup generated by x. Additionally there are 

automorphisms (a) ,  (a, N) = 1, of X / Q  and w< where ~ is a primitive N-th root 

of unity. The automorphism (a) is defined by 

(a): ( E , x )  ~ (E,  ax).  

The automorphism w¢ is defined by 

wdE, x) = (E / (x> ,  x ' )  

where x'  is the point in E / ( x )  with the Weil pairing (x', x} = ¢. Finally there is 

a correspondence which we shall not need 

Lie = w~UT for a prime r]N. 

The definition of/~" is independent of the primitive N-th root of unity (. These 

Hecke correspondences are all defined over Q, save for w; which is defined over 
Q(()+. 
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All of the above Hecke correspondences induce correspondences on the univer- 

sal elliptic curve ~r: E * Y by extending by the universal isogenies. For example 

(a) acts on E by multiplication by a. Functorially this gives the action of (a) 

on V ~ R17r,,~t(~) as multiplication by a. The action of (a) on Symmk-2(V) is 

therefore multiplication by a k-2. Similarly all the Hecke correspondences act on 

the sheaves Symm k-2 (V). 

Consider first T~ with g # p. The Hecke correspondence Te has good reduction 

at p: 
T ~ c X × X  

X X,  

with pr 1 and pr 2 denoting the projection onto the first and second factor, respec- 

tively. By definition Te = prl, ,  o pr~. Hence the T~-equivariance follows from the 

known functoriality of the Comparison Theorem. Set Vp = V ®zp Qp. It then 

also follows that  the decomposition 

(1) Hi(y_E, Symm k-2(Vp)) 1 ---- Hp~r (Yz, Symmk-2(Vp)) 

@ Hlis(Y-E, Symm k-2(Vp )) 

is preserved. Similarly the Hecke correspondence b/r has good reduction at p for 

a prime r]N, r :/: p. The induced Hecke operator Ur preserves the decomposition 

(1) and moreover U crys is associated to U~ t. 

The Hecke operator Tp is more interesting. There are 6tale Tp t and de Rham 

T DR defined on ~tale, respectively de Rham, cohomology in characteristic 0. 

There is also a crystalline Tp rys, defined by 

T ;  rys ---- Fp + (p)F~, 

where Fp denotes Frobenius and F~ is its adjoint with respect to the inner prod- 

uct. The operators Tp t and T DR are defined using the correspondence Tp as 

before. 

THEOREM 1.2: Assume p > k and p XN. 

(1) T£ crys is associated to T~ t, for a prime t XpN. Vr crys is associated to U~ t for 

a prime t i n  , r # p. 
(2) Tp rys ---- Tp DR, and this is associated to Tp t. 
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Proof: First note that  we can reduce immediately to the case of Qp-COefficients 

by considering the inclusion of the cohomology with Zp-coefficients. The point 

is tha t  the hypotheses p > k and (p, N)  = 1 insure that  the Zp-cohomology 

HI(Y-£, Symmk-2(V))  is torsion-free and hence injects into the Qp-cohomology. 

Also assertion (1) is rather trivial and is treated in the comments  above. 

As for assertion (2), we will first establish the assertion on Hpl~r, dealing with 

the Eisenstein part  later. With Y = YI(N), (p, N)  = 1 we denote by Z ° * Y 

the (k - 2)-fold product of the universal elliptic curve E and Z , X the 

desingularization (following Deligne [5]) of the corresponding product of N~ron 

models. Then Z - Z ° is a divisor with normal crossings. We have injections 

preserving scalar products: 

HI(Y-E, Symm k-2Vp ) 

H~(Y-£, Symm k-2'Vp) • 

1 
H1 (Yz-, Symm k-2Vp ) ' 

, Hk-l(ZL,  Qp ) 

1 
k--1 o 

" Hpa r (ZL, Qp) 

1 
There is a similar commutat ive  diagram for crystalline cohomology; the Frobe- 

nius automorphisms correspond. Furthermore the Hecke correspondence Tp on 

Y x Y induces a correspondence Tp ° on Z ° z Z ° by extending Tp by the uni- 

versal isogeny. Explicitly if ~ is a p-isogeny the for the pair (E, ~ (E) )  we have 

(Xl , . . .  ,xk-2)  E E k-2 mapped to ( ~ ( x l ) , . . . ,  ~(xk-2))  E ~ (E)  k-2. The Eichler- 

Shimura relation provides a description of Tv = T mod p. Letting 9Cp denote the 

Frobenius correspondence on Y = Y x Fp we have: 

( 2 )  = + 

This familiar relation is easily deduced. Observe that  if (E, x) E Y is an ordinary 

point then 

Tp . ((E, x) × Y) : (E/ ,p ,  ~) + } 2  (E/C, ~). 
C C  E[p] ~tale 

But if (E,x) is an ordinary point then Frobp(E,x) = (E/#p,~). Moreover if 

C C_ E[p] is an ~tale subgroup then 

(3) Probp(E/C,~) = (E/E[p], ~) ~- (E,px). 
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So one easily finds that  the sum ~CC_E[p] ~tale(E/C' 7) of equation (3) represents 

(p}~pt. Also 5c~ o 5Ep = p. (P/- This shows that the Eichler-Shimura relation holds 

on the ordinary locus of Y. So equation (2) is valid since the ordinary locus is 

dense on Y. Let 5 ° denote Z ° × Fp and correspondingly T ;  c_ Z° × ~o denote 

the reduction of T ° modulo p. If $~ denotes the Frobenius correspondence on 

T °, then exactly as above one sees that 

(4) z 7 = J:; + <p>(7;)' .  

Taking the Zariski closure we obtain a correspondence on Z × Z, which modulo p 

is given by the deconlposition .Tp + (p>(f-p)t  together with possible components 

supported at c~. 

Now for constant coefficients characteristic classes in 4tale, de Rham, and crys- 

talline cohomology correspond, cf. [7, Theorems 5.6 and 8.1]. So the induced 

maps on H~-I (ZL,  Qp ) and Hk-I (ZL,  Qp) correspond as well. Also, if we com- 

pose with tile map H~ -1 , H k- l ,  components at oc disappear. 

Finally, we check using the definition of the pairing in terms of Poinear~ Duality 
1 7 that the closure of ()cp)t operates o11 Hpar(}T, Symm k-2($)) as F¢. In general, 

suppose V is a smooth and proper variety over (~p of dimension d. The pairing 
d ( ,  } on H~ys(V, Qp ) is defined by (c~,/3) = Tl 'v(~  O fl). Suppose W C V x V is 

H 2d (V  a correspondence with cohomology class cw E ~y~,_ × V, Qp). The transpose 

correspondence W t of W has cohomology class cw*. Then we have 

(W.  a,/3} =Tr  v x v ( c w  12 (a x/3)) = ( - - 1 ) d T r v x v ( c w  , U (/3 x a ) )  

= ( - - 1 ) d ( w  t . /3, a)  = (C~, W t . /3). 

d Hence the correspondence W t act.s on H¢~y~(V, Qp) as the adjoint of W with 

respect to the natural inner product, ( , }. Applying these considerations to 

H k - I ( Z ,  Qp) then verifies the assertion. Tiffs then shows that  on H I p a r  

T~R = T c r y s  = + (p)7; .  

Also T~ t = T~ R by the de Rham Conjecture [7, Theorem 8.1] as the characteristic 

classes of Tp correspond. This settles the case for cusp forms. 

For the rest we denote by H~ the "cohomological" cokernel of H,* , H*, so 

that we have the exact sequence 

H ° . H ° . H ,  1. . H 1 * H ~  . H ,  2. * H 2 . 0 .  
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In de Rham or crystalline cohomology H~ is represented by the complex 

(Symmk-2£ .* Symmk-2£ ® ~(cusps)) ® O/ I~  

supported at the cusps. However, over the ordinary locus (and especially near 

the cusps) X °rd has a canonical Frobenius-lift (I) sending E to E modulo its 

multiplicative subgroup of order p. Also Tp = (I) + (p}(~t. This easily implies 

that T DR = Tp rys = Fp .-b (p)F t on H R. Finally from the Hodge-Tate theory we 

know that T~ t and Tp DR induce the same endomorphism on grF(H~R). As H~ 

has pure weight k - 1, this implies the assertion. | 

We make the following remarks concerning Theorem 1.2: 

I. Even if N is not prime to p, the de Rham Conjecture for Z implies that 

H1 (Yz-, SY mmk-2V) is a de Rham representation associated to H~) R. Fur- 

thermore the Tp'S correspond. This is true for Hpl~ and for grF(H~R), 

implying the result for H I (YL, Symm k-2V). 

II. The fact that  T~ t = T DR can also be seen using grF(H~)a) (as maps in 

3,t5 r are strict for the filtration). However the Eichler-Shimura relation 

T DR = Fp + F~ is surprisingly difficult to prove. The simplest way seemed 

to be the clumsy reduction to Z used above. A more canonical proof 

would require a more elaborate theory of correspondences in crystalline 

cohomology and their relation to ~tale cohomology. 

2. Modular representations ar is ing f rom a u t o m o r p h i c  forms 

Fix a level N _> 3 and a weight k _> 2. For a prime p denote by 0p the dtale sheaf 

Symm k- 2 (V) on !:1 (N) / Q. Define Op = 0v/pOp. The curve ]:1 (N) /Q admits cor- 

respondences Te, g XN; (d), d E (Z/NE)X; and Ue and U~, giN, which extend to 

correspondences on X1 (N) / Q. They induce endomorphisms of Hpl~r (Y1 (N)~, 0p). 

Let To be the E-algebra of endomorphisms of H~ar(YI(N)- ~, Op) generated by T~, 

g { N, and (d), d c (E/NZ) × Let ~i' be the Z-algebra of endomorphisms of 

H~ar(YI(N)~ , Op) generated by T0 together with U~ for giN. The rings ~I" and T0 

are independent of p. Visibly To is a subring of the commutative ring T. 

Suppose that m C T is a maximal ideal with residue field k = k(m) = ~ ' /m 

of characteristic p. Write Frob~ for a Frobenius element corresponding to the 

prime r in Gal (Q/Q). Then there is a unique semi-simple representation (up to 

isomorphism) 

Pro: Gal (Q/Q) , GL(2, k) 
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such that  Pm is unramified for all primes r XpN and for such primes 

Tr(pm(Frob~)) = T~ m o d m  and d e t ( p = ( F r o b . ) ) =  (r)rk-1 m o d m .  

This is essentially due to Deligne. See, for example, [15, Proposition 5.1] or [9. 

Proposition ll .1]for detailed proofs. Note that  due to the Brauer-Nesbi t t  Theo- 

rem the representation Pm is determined up to isomorphism by the characteristic 

polynomials of Frobenius for a set of primes r of density 1. Hence if m and m '  

are two maximal ideals of ~" with m0 = in N To = m '  n T0, then Pm is isomorphic 

to Pm'. Hence we may equally well refer to this isomorphism class of represen- 

tations of Gal (Q/Q) as Pm0, viewing it as being associated to the maximal  ideal 

mo C_ To. 

As a preliminary to applying the Eichler-Shimura relations to 

HI~(Yx(N)~, Op), we must discuss the distinction between arithmetic and ge- 

ometric Frobenius. Note that  on H*t(YI(N ) × Fe,Op) we can let Frobenius at 

act via YI(N)/Fe or via ~ .  The action of Frobenius via Y](N)/Fe is the ge- 

ometric Frobenius Fg~om and the action of Frobenius via F, is the arithmetic 

Frobenius F~ith. The two are related - -  Fg¢o~ and F~ith operate as inverses on 

Het(YI(N) × Fe, Op). The Eichler Shimura relations give that  

T e ~- Fg . . . .  + (g)Fteom 

m 

as operators on H*t(YI(N)~, Op). Now the action of Ga l (Q /Q)  on 

HI~r(YI(N)Q~Op) is via the second factor, i.e., Frobe = Fe acts as arithmetic 

Frobenius. Hence we must work with the dual HI~r(YI(N)-~,Op) v 
as a V[Gal (Q/Q)]-module to have the relation Te = Fe + (g)F~ valid for g )(pg. 
Equivalently we consider the Gal(Qe/Qt)-representat ions 1 ]~(Hcrys) for each 

prime to pN. Another advantage of these representations is that  they tend to 

have positive weights. However, this use of the dual gives us a contravariant 

correspondence between crystalline and ~tale, allowing ample cause for confusion 

but also making it more interesting. 

By a standard argument (cf. [14, Sect. 2.14]) the T / m n [ G a l  (Q/Q)]-module 

H~r(Yl(N)~,Op)/mnH~ar(Yl(N)~,~p), n > O, 

has a decomposition series whose subquotients are constituents of the dual pV m 

of Pm • 
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In case Pm is irreducible, the crystalline information of Theorem 1.1 readily 

yields the following theorem. 

THEOREM 2.1: Let m C_ T be a maximal ideal with k = T i m  of characteristic 

p. Suppose p~ is irreducible. If p > k, then: 

(1) H ~ ( Y I ( N ) ~ ,  ~p)[m] v is isomorphic to the k[Gal (Q/Q)]-module corres- 

ponding to Pro. In particular dimk H~(YI (N)~ ,  ~p)[m] - 2. 

(2) The local ring T~ is Gorenstein. 

Proof." Firstly observe that H~r(YI(N)~ , ~p)[m] ¢ 0 since 1" operates faithfully 

on H~r(Y1 (N)~, v~p) v. This can be seen from the complex theory (specifically the 

Eichler-Shimura isomorphisms). Let W be the k[Gal (Q/Q)]-module correspond- 

ing to Pro. Then because pm is irreducible we have that  the semisimplification 

of g~r(Yl(N)~,-~p)[m] v is isomorphic to W d for some d _> 1 (cf. [14, Sect. 

2.14]). By Theorem 1.1 the Gal (Qp/Qp)-representation H ~ ( Y I ( N ) ~ ,  ~p)[m] v 

is crystalline with Hodge weights 0 and k - 1; the same statement applies to Pm. 

Set Sk = Sk(FI(N)) .  If M is the F-crystal corresponding to 

(glp~r(Yl(Y)~, ~p)[m]) v, then gr~- l (M)  ~ (Sk/pSk)[m] which is of dimen- 

sion 1 over k by Multiplicity One. But taking the semisimplification we have the 

isomorphism 

~ W d = for some d _> 1 

by Brauer-Nesbitt .  As gr F is exact (morphisms of F-crystals are strict), this 

forces Pm to correspond to an object in J~45r(Zp) with gr~ -1 of dimension 1 

over k and d = 1. Accordingly we must have that gr ° is of dimension 1 over k 

since the total dimension is 2. In other words, both weights 0 and k - 1 must 

occur in Pin with multiplicity one and hence W = HI~r(YI(N)~, ~p)[m] v. This 

establishes (1). As g r ° (M)  ~ (S;/pS;)[m] then has dimension 1 over k, this 

gives the Gorenstein condition in (2). | 

In case pm is reducible it is much harder to analyze. To apply the crystalline 

results we first observe the following: 

- -  - - X  

LEMMA 2.2: Let ¢: Gal(Qp/Qp) , Fp be a character and denote by 
- -  - - X  

X: Gal (Q/Q) .  , Fp c_ Fp the p-cyclotomic character. Denote by I C_ 

Gal (Qv/ Qp) the inertia subgroup. Then ¢ is crystalline o[ weight s, 0 < s < 

p - 2, it" and only if @ = X 8 on I. 
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Proof: The statement depends only on inertia, so we pass to Q~nr. Let M be 
- -  - - X  

the F-crystal  corresponding to the crystalline character ¢: Gal (Qp/Q~nr) , Fp 

which we assume to be of weight s, 0 _< s <_ p -  2. Then M = F~M = Pp. e for a 

basis element e. We have that  ~ e  = ue for a unit u. The unit u determines the 

isomorphism class of the one-dimensional M of weight s subject to the change of 

variables tha t  u and uA°A -1 define isomorphic M for Frobenius automorphism 

a and any unit ,~ in Pp. But then by Hilbert 90 H l ( G a l  (Fp/~p) , -x  Fp ) = 1. Hence 

up to isomorphism there is only such M; obviously X ~ is crystalline of weight s. 

| 

The crystalline results in the reducible case then yield the following. 

THEOREM 2.3: Suppose p~  is reducible. Then 

Pm = a ® ~X k-1 

where a,  Z: Gal (Q/Q) * k x are characters and X: Gal (Q/Q) , yp c_ k x is 

the p-cyclotomic character. The characters ~ and 13 are unramified outside pN.  

I f  p > k, then ~ and/3 are unramified at p. 

Proof: If p > k then at p Pm is crystalline, of weights 0 and k - 1. As in the 

proof of 2.1, Multiplicity One on cusp forms implies that  Pm corresponds to an 

object in Adjr(7/,p) with gr~- -~ and gr ° both  of dimension 1 over k. The result 

then follows from 2.2. | 

3. C l a s s i f i c a t i o n  o f  m C_ T w i t h  Pm r e d u c i b l e  

3.1 CONSTRUCTING EISENSTEIN SERIES VIA GEOMETRY. Before s tudying  

Eisenstein ideals we must first review the relevant basic material  on the modular  

curve X1 (N) and the classical function theory associated to F I (N) .  

Firstly recall that  the cusps of X1 (N) correspond to degenerate elliptic curves 

and may be parametr ized by pairs (~, a)  with ~ e ~N, a = i /Nc E Q / Z  with 

N¢ = Nc(~, a)  equal to the denominator of a.  Define Nm = Nm(( ,  a) by N = 

NmNe. The parameters  ((, a)  correspond to the data  (E = Gm/q z, x = ~. q~), 

which is defined over 7/,[l/N, ~][[ql/~¢,]]. Note that  the base %[l/N, (][[ql/N,]] has 

automorphisms ql/N, ~ pql/N,, pN, = 1. Therefore we have the equivalence: 

(5) ~ (¢p, for an p e 
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Denote by (C, a> the equivalence class of the parametrized cusp ((, a) with respect 

to the equivalence (5). We call (C, a)  an oriented cusp of XI(N). Additionally the 

Tate curve E = Gm/q z has automorphism group (:t:1), inducing an equivalence 

on the set of parametrized cusps 

(0) (; ,  ~ (C -1 ,  

The equivalence (6) induces an equivalence 

(7) <C, ~ <C 

on the set of oriented cusps. Denote by [~, a] the equivalence class of an oriented 

cusp (C, a) with respect to the equivalence (7). Then {[C, a]} is naturally iden- 

tified with the set of cusps on XI(N) .  For q-expansions however we shall need 

parametrized cusps. 

Cusps with Nm = N, Ne = 1 are called multiplicative cusps. The oriented 

cusp c~ = (@, 1> where @ is a fixed N th root of 1 is a multiplicative oriented 

cusp. The set of all multiplicative oriented cusps is then given by (d> • co, d E 

(Z /NZ)  ×. Cusps with N~ -- N, Nm = 1 are called dtale cusps. The oriented 

cusp 0 = (1, I /N) is an ~tale oriented cusp; the set of all dtale oriented cusps is 

then given by (d) • 0, d E (Z /NZ)  x. The remaining cusps with Arm ¢ 1, N e ¢  1 

are called cusps of mixed type. 
We now turn to function theory. Let R be a commutative ring with 1/N E R. 

Denote by Mk(R) the R-module of modular forms of weight k for FI (N)  defined 

over R. By definition, Mk(R) = H°(XI(N)/n,  ~11(N)(cusps) ® w®(k-2)). The 

cusp forms of weight k, Sk(R) C_ Mk(R), are defined by Sk(R) = H°(XI(N)/n,  
~Xl(N) ® . As in our earlier general foundational comment in Section 

1, if N < 3 it is necessary to use stacks or auxiliary level structure for such a 

definition of Sk(R). The Kodaira-Speucer class gives an isomorphism of sheaves 

i: w ®2 ~-, ~lXl(N)(cusps ) on XI(N), which in turn gives an isomorphism of R- 

modules Mk(R) ~- H°(XI(N), wok). Via this isomorphism we define the notion 

of q-expansion of a modular form. For any parametrized cusp (C, a) ,  f E Mk(R) 
has a q-expansion at (~, a), f(~, a)(q) E R[~][[ql/N~]], defined by 

f(Gm/q z, x = C" q~) = f(~, a)(q)" (dt/t) ®k. 

The customary and convenient notation f(C, a)(q) for q-expansions is misleading 

in that f(~,a)(q) is a power series in ql/No and not q. We will occasionally 
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abuse notation and write f ( ( , a )  = f(~,O~)(q 1/Ne) for the power series i n  ql/N~ 
with coefficients in R[(] given by f ( ( ,a ) (q) .  It is important to note that  the 

q-expansion at (4, c~) depends on the parameters and is not invariant under the 

equivalences (5) and (6). Specifically suppose cr N~ = 1 and define (q,)l/N~ = 

o-qUN~. Then 

(G,~/q z, ( .  q~) = (Gm/(q') z, ~a -Ne~ • (q')(~). 

Therefore 

(8) f ( ( , a ) ( q  1/N') = f((o'-N~'~,O~)(o'qt/N~) for c~ C ~N,. 

Likewise one has 

(9) f ( ( - 1 , - a ) ( q )  = (-1)k f ( ( ,  a)(q). 

Remark 3.1: A modular form f E Mk(FI(N))  then has a q-expansion at a 

parametrized cusp ((, a) given as f ( ( ,  a)(q) -- ~n~__0 an((, a)q n/Nd[¢'~]). There 

are important cases when the coefficients an((, a) depend only on the oriented 

cusp (4, a / ,  i.e., are invariant under the equivalence (5): 

1. We see from equation (8) that the constant term a0(f; ((, a)) is independent 

of the the parameters ((, a) used for the oriented cusp c = ((, a/ .  Hence 

we write a0(f; c). 

2. If the oriented cusp c is multiplicative then it has a unique parametrization 

c = (4,0) for ( some primitive N th root of 1. Hence we write f(c)(q) = 

~n~=O an(f; c)q n in this case. In particular any f C Mk(FI(N)) has a well- 

defined q-expansion at the oriented cusp oc. 

So for f E Mk(FI(N) we define: 

(10) a o ( f )  = 
or i en t ed  
cusps  C 

ao(f; c)c C R[oriented cusps]. 

Note that there is a homomorphism of R-modules 

ao: Mk(R) * H°(cusps, w ®k ® R). 

The cusp forms Sk(R) C_ Mk(R) are then equal to the kernel of~o. Let Ek(C) C_ 

Mk(C) be the space of Eisenstein series, i.e., the orthogonal complement to 

Sk(C) under the Petersson inner product. Then, for k > 3, ~o: Ek(C) . 
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H°(cusps, w ®k ® C) is an isomorphism. (For k -- 2 50 is injective with 1- 

dimensional cokernel.) The relationship between a0 and a0 is as follows. Observe 

that the differential (dt/t) ®k as a chosen generator canonically identifies 

H°(oriented cusps, w ®k ® R) ~ R[oriented cusps]. 

On the other hand, there is only a noncanonical isomorphism between 

H°(cusps, w ®k ® R) and R[cusps]. In fact, to choose an isomorphism is equiv- 

alent to choosing an oriented cusp defining each cusp. Therefore we have the 

commutative diagram below, where the vertical map is taking the quotient by 

H°(oriented cusps, oJ ®k ® R) ~- R[oriented cusps] 

1/(4"1) 
Mk(R) -~o , H°(cusps, w ®k ® R) 

We recall from Section 1 that we have the following Hecke correspondences on 

the universal elliptic curve ~: E , XI(N) :  

• Corr(Te) with the prime £ not dividing N 

• Corr(Ut) if the prime t iN 

• Corr((d>), (d, N ) =  1 

• Corr(w(T), where N = TS with (T, S) = i and ( T  is a primitive T th root 

of unity. If ( is a primitive N th root of unity we write we instead of W(N. 

The isomorphism of sheaves ~®2 ~-~ ~21(cusps) on XI(N)  given by the 

Kodaira-Spencer class induces an isomorphism between H°(XI(N)/R,  

f ~ l  (N)(cusps) ® w ®(k-u)) and H°(X1 (N)/n, wok). The space of modular forms 

Mk = Mk(R) may be identified with either of these cohomology groups. The 

Hecke correspondences Corr on the universal elliptic curve -~: E , XI (N)  in- 

duce pull-back morphisms Corr* on 

H°(XI(N)/R,  gllxl(g)(Cusps) ® w ®(k-2)) and H°(XI(N) /n ,  wok). 

(There are also induced push-forward morphisms which we do not consider.) 

However a crucial point is that the Kodaira-Spencer isomorphism i: w ®2 ~* 

flxl(Iv)l (cusps) on XI(N)  is not Hecke-equivariant. Specifically under an isogeny 

Kodaira-Spencer introduces a factor equal to the degree of the isogeny. Hence 

there are two contravariant actions of the Hecke operators on Mk. The action 
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which gives the classical formulae is that  of H°(X: (N), w®k-2 ® fl: (cusps)). This 

is also the group arising from the de Rham complex and crystalline cohomology. 

Hence it is necessary to take this action in order for the Comparison Theo- 

rem between p-adic ~tale and crystalline cohomology to be Hecke equivariant. 

We identify Mk(R) = H°(XI(N)/R,  f~X,~(N)(CUSpS) G a3®(k-2)). The action of 

Corr(Te)* for the prime f AN on f ~ Mk(R) will be denoted simply Tef. The 

pull-back action Corr(Te)* on H°(cusps, a~ °k ® R) will be denoted simply by Te. 

Accordingly we take the dual action on the cusps thus cusps are pushed forward 

and functions on cusps (i.e., cohomology classes) are pulled back. For an oriented 

cusp c G R[oriented cusps] ~ H°( oriented cusps, w ®k ® R) we denote Corr( Te )*c 

simply by Tec. The pull-back actions for the rest of the Hecke operators will be 

similarly denoted. With this Hecke action on the cusps the homomorphism of 

R-modules 

go: Mk(R) • H°(cusps, w ®k ® R). 

is not Hecke-equivariant. 

Suppose N = ST  with (S, T) = 1. Then there is a corresponding factorization 

of cusp data. Namely for any elliptic curve E we have 

(11) E[N] ~-. E[S] x E[T] via E[N] ~ P ~-* (TP, SP). 

In particular consider the Tate curve Gm/qZ with the point c = ~3Nqi/g¢ of exact 

order N where ~N is an N- th  root of unity. Write Nm(c) = Nm = SmTm and 

Ne(c) = Ne = S~T~ with S = StaSh, T = TmT~. Set @ = IN T and IT = iSN • Un- 

der the isomorphism (11), this point of order N corresponds to the pair of points 

(iJsq iT~/S~,i~.q i~'~/T~). Parametrized cusps ( f~ , i /N~)  on XI(N)  correspond 

one-to-one with pairs of parametrized cusps ((i~ (s), i(S)/Se); (i~ (T), i(T)/T~)). 

By simple computat ions on the Tate curve Gm/qZ we assemble a "formulaire" 

for the Hecke actions. A remark on the notation used in the formulae follows the 

proposition. 

P R O P O S I T I O N  3.2: For a modular form f E Mk(R) and a cusp (i, a = i/N~) 

we have: 

1. ((d}f)(f,  a)(q) = f ( i  d, da)(q). 

2. (Tef)(i, a)(q) = f k - l f ( i e ,  a)(q e) + ~ EC~= 1 f ( i t [  ge~, fa)(ieql/e). 
1 

3. If  elNm, (Uef)(i,a)(q) = ~ ~ f(iiee%ga)(ieql/e).  
¢[=1 
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I[~ XNm, (Utf)(~, a)(q) = t k - l f ( ~  ~, a)(q g) 
1 

4. If Sm ¢ l and S¢ ¢ l, 

f ~ .(¢j(T)S~, T~ t ~S" q )"  

If Sm = l ( s o S ~ = S ) ,  

If Se = 1 (so Sm = S), 

Remark 3.3: We will explain in detail the notation used in Proposition 3.2(2), 

the other formulas being completely analogous. Choose p so that p Ne ---- ~e. Then 

f (~[e~ ,  ~a)(~eql/e) means the power series f(~p-tge~ ~a)(pql/ege) in pql/eN,. 

The notation is justified since the power series is independent of the choice of p. 

If we instead took/5 = p7 with T N° = 1, then 

f ( ~ - eg ,  a, ga )(~ql/N~t) = f ( ¢p-tN~r-tN~c~ ' eCt)(rpql/~N~ ) 

= f(¢p-~N,a, ~a)(pql/tNe) 

by formula (8). 

This notational convention is also used in the next proposition. 

The Hecke action on H°(oriented cusps, w°k@ R) ~- R[oriented cusps] is 

analogously given by: 

PROPOSITION 3.4: 

1. (d>(C,a)= (Cd, da). 

2. Tt(Ga) = ek<<t,a> + g((,ga). 
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3. Irelgm, Ue(¢,~)= y~.(¢¢[e~,t~). 
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Gt=l 

If g XN~, Ue((,a) = fk((e,a) + ~_, (¢¢-[~",e~). 
~f=l 

4. If Sm ¢ l and Se ¢ l, 

19 

In particular apply Proposition 3.4 to oc = (@, 0) to deduce that: 

T~((d>oo) = 5(1 + (e}tk-1)(d)oc, e XN, 
g-1 (12) Ud(d)oo ) = (d)(fec + ~ j = l ( @ , J / O ) ,  Gin, 

W(o((d)oo ) = (-1)k(d-1}0. 

Likewise Proposition 3.2 applied to oo yields the classical formulae for Hecke 

operators on Fourier expansions. If f 6 Mk(R) has q-expansion at c~ given by 
f(oo)(q) oo ~ = ~n=o anq and ((e)f)(ec)(q) = En=0  bnq ~, then 

2_, ,~q , (13) (T~f)(oo)(q) = ~ aneq n + e k-1 ~-" b ne (5, N) = 1, 
(UJ)(oc)(q) = ~, a,~q n, GIN. 

ao(T~f;c) = (1/g)ao(f;Ttc), 

ao(Uef;c) = (1/g)ao(f;U:), 

ao((d>f;c) = ao(f;(d>c), 

ao(w¢sf;C ) = (1/S)ao(f;W(sC). 

/ : z_ , / i ( s )  j ( S ) - I  • " r ) s \  
S~ 

I[ Sm= 1 (so Se = S), 

WCs {(1 i(S)~ ((~(r>, i<T)))  = {<(s,/i(S) o);<(~(m), ~ ) ) }  
o ); me 

//'me = 1 (so S m =  S), 

W(s (((Js(S>,O);((;(T),i(T))) = S  k (<I J(S--)S----~I);((JT(T>s,i(T))> 
Te Te " 

Comparing Propositions 3.2 and 3.4 we see the degree of the isogeny entering, 

causing a0 not to be Hecke equivariant: 

PROPOSITION 3.5: For f 6 Mk(R) and c an oriented cusp, we have: 
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The notion of twisting a modular form by a Dirichlet character admits  a de- 

scription in terms of moduli which we now recall. Suppose M is a positive 

integer which divides the level N. Let ~- be a Dirichlet character of conductor 

M. Consider (E, x) with x an exact MN-division point on the elliptic curve E.  

Then E' = E/ (Nx)  possesses canonical M-division points, namely N / M Y  and 

= Im(y)  with (Nx, y) = ~o is a fixed primitive M t h  root of 1. For A E ( Z / M Z ) ,  

set E~ = E' / (~+ ANT),  ~v~: E , E~ the natural  isogeny, and x~ = ~ ( x )  on 

E;~. 

Definition 3.6: Suppose f is a modular form of weight k on F I (N) .  Define the 

modular form f~ = f ® r of weight k and level N M  by 

f f ( E , x )  = (1 /M k+l) ~ ~ T(P)(ogXqo*~f(Ex,xx). 
)~ e z / M Z  i, t e  ( ~ / M Z )  × 

If f has character e then f~ has character eT 2. 

We compute the effect of twisting on q-expansions adhering to the above nota- 

tion. So consider (E, x) = (Gm/q ~, ¢ = CMN) with x = h a point of exact order 

MN.  The curve E '  is then E/(Nx) .  The M t h  power map gives the identifica- 

tions: 
N 

E' ~- * Gm/qMZ with • = CN, ~ " X = ~M, and y = q. 

The curve Ex is correspondingly given by Gm/(q(~) with Yx = (g .  Hence if 

f(q) = f(cc)(q) = ~-~.n°°=o anq n we have: 

(14) f ( q )  = 1 /M k+l ~ ~ T(#)(ogXMkf(q¢~) 
X e Z / M Z p e ( Z / M Z )  x 

= 1 / M y ~  ~ T ( # ) ~ O  "~ an(q¢~) n 
,k ~t = 

(zz I = ~ a n "  1/M v(#)(~ n-")x q~ 
n=0 \ ,X tt ] 

O ~  

= ~ r ( n ) a ~ q  ~" 
n ~ O  

We therefore recover the classical definition of twisting via the above effect on 

q-expansions. 

From Definition 3.6 the effect of the Hecke operators on twists of modular  

forms is easily computed: 
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PROPOSITION 3.7: 

1. T~(f ~) = ~(e ) (Tdy  for a prime g XN. 

2. Ue(f'-) = r(g)(Uef)  T for a prime giN. 

3. (d).  f "  = ~-(d)2((d) • f ) ' .  

Finally in this preliminary section we consider Eisenstein series. Recall that 

Ek(C) is the orthogal complement to the cusp forms Sk(C) ~- H ° ( X : ( N ) ,  

w ®(k-2) ® :21 ) in the space of modular forms Mk(C) ~ H ° ( X : ( N ) ,  

w ®(k-2) ® Oa(cusps)). For simplicity we assume k : 3 so that  a0: Ek(C) ~-, 

H°(cusps, w °k ® C). So then Eisenstein series are identified with their constant 

terms. In particular we can use this both to construct Eisenstein series and to 

compute Hecke actions on Eisenstein series. Suppose : is a Dirichlet character of 

conductor N with s ( - 1 )  = ( -1 )  k. Let /)( : ,  1) E EL(C) be the Eisenstein series 

with 

ao(/~(:, 1)) = Z :(d)(d). O. 
d E ( Z / N Z )  × 

By definition/)(e,  1) is a modular form of weight k on F i (N) .  We remark that  if 

k = 2 then the image of ao is the codimension 1 subspace consisting of elements 

of trace 0. In this case it is necessary to assume that the character ~ is primitive 

to satisfy the condition that the sum of the residues must be 0. 

For any modular form f of weight k with q-expansion at cc given by f (oo)(q)  = 

e~ ~ E n = l  ann • ~n = 0  anq n we have the associated Dirichlet series L( f ,  s) ~ -~ 

P R O P O S I T I O N  3 . 8 :  

1. (d)(/~(:, 1)) = :(d)/~(e, i) 

2. Te(E(e, 1)) = (:(g) + gk-1)/)(e, 1) for all g ~'N 

3. Ue(E(:, 1)) -- g~-: / ) (c ,  1) for all t iN. 

Hence L(/)(e, 1), s) -- C(: )L(s ,  e)L(s  + 1 - k, 1) for a nonzero constant C(:) .  

Proof." Set E = / ) ( : ,  1). Then by Proposition 3.5 we have for c an oriented cusp 

a0((d)/); c) = a0(/); (d)c) = 0 unless c is dtale. Since 

a0(/); (d)(1, d ' /N) )  = ao(/); (1, dd ' /N) )  = :(dd') = a0(:(d)/);  (1, d ' /N) ) ,  

we conclude that ao((d)/)) = ao(¢(d)E). Hence (d)E = ¢(d)/~, establishing (1). 

For (2), Proposition 3.5 gives that a0(TeE; c) = (1/g)ao(E; T~c) = 0 unless the 
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oriented cusp c is ~tale. We furthermore have 

a0(TtE; (1, d'/N) ) -= (1/e)ao(E; Te(1, d' /N) ) 

-- (1/g)ao(E; gk(1, d ' /Y )+  g(1,gd ' /g))  by Prop. 3.4(2) 

= ao((~ k-1 + (e ) )E ;  (1, d ' / N ) ) .  

Therefore we conclude that ao(TeE) = ao((t k-1 + ¢(g))E), implying (2). 

Likewise for (3) we have that ao(Ue/~; c) = (1/g)ao(/~; U~c) = 0 unless the 

oriented cusp c is ~tale. Moreover 

ao(Ut/~; (1, d'/N)) =(1/g)ao(/~; Ut(1, d'/N)) 

=(1/t)ao(E; gk(1, d'/N) + ~ (~[td'/N, gd'/N)) 

by Proposition 3.4(3) 

=a0((gk-1/~; (1, d'/N)), 

proving (3) and concluding the proof of the proposition. II 

Having defined ~7(¢, 1) by giving its constant term, we see from Proposition 3.8 

that it is an eigenfunction for the weight k Hecke algebra T for FI(N).  We need 

to determine its q-expansion at oo, E(¢, 1)(oo)(q). For this we use its functional 

equation. In general, suppose f • Mk(FI(N))  with f(oo)(q) = ~°°=o anq ~. Set 

] = f - ao and 

/o f D ( I ,  ~) 1 ~ ] ( z ) y ~ - i e z  ~ i ~ - ld  = _ = f (  y ) y  y;  i 

the integral is absolutely convergent for Re (s) > k. If Re (s) > k, then 

Let 

D ( f ,  s) = r(s)(2~)-SL(f, s), where L(f, s) -= ~ a__~ 
U s 

n=l  

0 -1] 
7 =  N 0 

and put g = fi[7]k • Mk(PI(N)) .  So by definition g(z) = N - k / 2 z - k f ( - 1 / N z )  
for z in the Poincar~ upper half plane. Observe that g = N-(k-2)/2w;(f) where 

-- e 2~ri/N. We denote the q-expansion of g at oo by g(oo)(q) = ~ = 0  b~q n and 

set ~ = g - bo. Then for Re (s) > k, 

(15) D(f ,s)=~ol/V~f( iy)yS-ldy + ~ °° ](iy)yS-ldy 
/v~  
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/ f f  /1 - f( iy)y~-ldy - N-~/2(ao/s) + ](iy)yS-ldy. 
/ , /~ 

But using the functional equation f ( - 1 / N z )  = Nk/2zkg(z) we have that 

(16) [ f(iy)y~-ldY = f l  f ( i /Ny )N-"Y - I -S d Y  
J o / ,/~ 

= _ieN-~/2 + ikN k/2-~ {?(iy)yk-l-~dy. 
/vW 

Now the integrals 

f l  ~ ](iy)y~-ldy 
/ v ~  

23 

and ~(iy)yk-l-Sdy 
/ v ~  

are absolutely convergent for all s and so are holomorphic throughout the complex 

plane. Putting equations (15) and (16) together then, we see that D(f,  s) can be 

written as 

(17) D(f ,s )  = ](iy)yS-ldy + ikN k/:-8 O(iy)yk-l-~dy 
/ ~  / , /~  

-N-~ /2  (a°  - ik b° ) s -  k 

We record this information for future reference: 

P R O P O S I T I O N  3.9: Let f • Mk(FI(N)) with f(oc)(q) = ~n=0°° anqn. For 

[01] 
~/= N 0 ' 

set g = f lb]~ and a(~)(q)  = E : - o  b~q ~. Then D(f , s )  has a meromorphic 

continuation throughout the complex plane with simple poles at s = 0 and s = k. 

Moreover Res~=o D(f  , s) = -ao and Res~=k D(f  , s) = ik N-k/2bo. 

We now apply this proposition to find the q-expansion/~(1, c). We shall need 

a formula (cf. [4, Chapter 9]) arising from the functional equation of L(k, e): 

(18) For e primitive with e(-1)  = (-1)  k, 

L(k,¢) = r(E)(27~)kN-ki-k 
2F(k) L(1 -- k , g - i ) .  

Here r(e) denotes as usual the Gauss sum associated to ¢. 
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P R O P O S I T I O N  3.10: Suppose ¢(-1)  = ( -1 )  k. Set L(s ,e)L(s  + 1 - k, 1) = 
OO - - 8  ~ n = l  ann . Then 

co i k  

/~(¢, 1)(c~)(q) = C(¢) E anqn' where C(s) = (2~)_kr(k)L(k,  ~). 
n = l  

I f  ~ is primitive, then there is the equivalent formula 

( -1 )k2N k 
C(c) = T(c)L(1 -- k,¢-1)" 

Proo~ Let ] = /~(~, 1). By Proposition 3.8, L(], s) = CL(s, ¢)L(s + 1 - k, 1) 

for some constant C = C(~). Then D(], s) = C(2~)-~r(s)n(s, ~)L(s + 1 - k, 1). 
It follows that 

aess=k D(], s) = C(2~)-kF(k)L(k,  ~). 

On the other hand, apply Proposition 3.9 to ] = E(¢, 1). Then g = fl[~]k = 

N - ( k -  2)/2w¢ ( f  ) satisfies 

ao(g; co) = N-(k-2)/2ao(w¢(f); oc) = N-(k -2) /2Nk- lao( f ;  O) = N k/2' 

and hence Res~=k D(], s) = i k. Equate the two expressions for Res~=k D(],  s) 

and solve for C = C(¢). We find 

i k 
C = C(s) = (2~)_kr(k)L(k,~) .  

If ~ is primitive, apply equation (18) to obtain the indicated formula for C(¢) 

and conclude the proof of the proposition. | 

Normalize by setting 

- 1  1 - (--1)kT(e)L(1-- k,¢ )~(~,1) .  
E(s,  1) = ~--;--TE(~, 1) = 

2N k t~tE) 

Then 

(19) 

and 

(20) 

E(¢, 1)(c~)(q) = E a"qn where L(s, ¢)L(s + 1 - k, 1) = E ann-S 
n = l  n----1 

ao(E(e,1)) = (-1)kik(2~)-kF(k)L(k,e) ~ ¢(d)(d) .O. 
d E ( Z / N Z )  × 
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If ~ is primitive then by equation (18) this may be rewrit ten 

(--1)kT(c)L(1 - k, ~-1) ~ e(d)(d). O. 
(21) ao(E(c, 1)) = 2N k 

d E ( Z / N Z )  × 

Now suppose N = ST with (S, T) = 1. Let c be a primitive Dirichlet character  

of conductor  N and factor 

( E / N Z )  × ~ (ELSE) × ( Z l T E )  × × £ = £ S g T  : = × ,, C~ . 

For an elliptic curve E we identify the da ta  (E, XN) where XN is a point of exact 

order N with (E, xs = TXN, XT = SXN). Diamond operators  (dis then act by 

(d)s(E, x s ,  Z T )  = (E, dxs, X T ) .  

By definition, (d) = (d)s(d)T. It  is easily checked tha t  W(s o (d)s = (d-1)s OW(s 

and W(s o (d)T = (d)T o W(s. Factoring into S- and T- components  we see from 

equat ion (20) tha t  

ao(E(¢,  1)) = (-1)kik(27r)-kr(k)n(k, E)E(a,b)cs(a)¢T(b)(a)s(b)T" 0 

/-1)~(~)L(~-k'~-l) ~(a,bl es(a)sT(b)(a)s(b)T" 0 if z is primitive. 
= 2 N  k 

(22) 
Here the sum is taken over (a, b) C ( Z / S Z )  × × ( Z / T Z )  ×. For any oriented cusp 

c we have from Proposi t ion 3.5 tha t  

ao(w(sE(¢, 1); c) = (1/S)ao(E(e, 1); W(sC ). 

Hence ao(w(sE(e, 1);c) = 0, unless S = N~,~(c) and T = N~(c), i.e., unless 

c = (a)s(b)v(((s, 0); (1, I/T)) for some (a, b) e ( Z / S Z )  x × ( Z / T Z ) x .  

But  we compute  

ao(w(s E( ~, 1); @ S@T< ( (S, 0); (1, 1/T) > 

= ( 1 / S ) a o ( E ( e ,  1); ( a - 1 ) s ( b ) T w ( s  (((S, 0); (1, l / t ) ) )  
= sk-lao(E(¢, 1); (a-1)s(b)rO) 

k,e  -1)  

Hence we obtain  the formula: 
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PROPOSITION 3.11: 

ao(W(s E( e, 1)) 

= (-1)kik(2~)-kr(k)L(k, ~) ~ e~l(a)eT(b)(a}s(b)T((~S, 0); (1, 1/T)) 
(a,b) 

(--1)kv(e)L(1 -- k,e -1) 
= 2--NT-Y--f E esl(a)eT(b)(a}s(b}T((~S' 0); (1, 1/T)} 

(a,b) 

if e is primitive. 

To shorten notation set f = wcsE(e, 1). Then the Hecke eigenvalues of f are 

as follows. 

PROPOSITION 3.12: For f = wcsE(¢ , 1), 

(1) (d)f = e~l(d)eT(d)f. 
(2) Tef = (eT(g) "-}- esl(~)~k-1)f  if e X N. 

(3) u d  = esl(e)ek-lf if elT. 
(4) If es is primitive, then Uef = eT(e)f if elS. 

Proof." As usual, Proposition 3.5 reduces the problem to the action of the Hecke 

operators on the oriented cusps and this is in turn computed in Proposition 

3.4. For (1), note that since ao({d)f;c) = a0(f; (d)c) for an oriented cusp c 

Proposition 3.11 shows that ao((d)f; c) = 0 unless c = (a)s(b)T((¢s, 0); (1, I/T)} 
for some (a, b) E (Z/SZ)  x × (Z/TZ)  x. But 

ao((d)f; (a)s(b)T(((s, 0); (1, l /T) ) )  

=ao(f ;  {da)s(db)T(((s, 0); (1, 1/T)) 

=e~l(d)ew(d)ao(f; (a)s{b)w(((s, 0); (1, I/T)}). 

Hence ao( (d}f) = ao(esI(d)ew(d)f), establishing (1). 

For (2), we recall the formula (Proposition 3.5) ao(TJ;c) = (1/£)ao(f;Tec) 
for any oriented cusp c. Appealing to the formula of Proposition 3.11 we deduce 

that a0(f; c) = 0 unless c = (a}s(b)T((¢s, 0); (1, I/T)}. Moreover 

ao(f;  Te(a}s{b)T(((s, 0); (1, l /T ) ) )  

=(1/e)ao(f; (a)s(b)TTe(((s, 0); (1, l /T)})  

=tk-lao(f; (( (~e, 0); (1, b/T)) 

+ a0(f; (((b, 0); (1, ct/T))) by Proposition 3.4 

=(ek-lesl(e) 

+ ~r(e))~o(Y; (a)s(b)T((gs, 0); (1, X/T))). 
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We therefore have that 

ao(Tef) = a 0 ( ( e k - l E s l ( f  ) -~ eT(f) f) ,  

proving (2). 

The proof of (3) in the case fiT is exactly analogous to the proof of 2) above 

for the action of Te and is left to the reader. In case f[S, a0(f; Uec) = 0, unless 

Sin(c) = S or Sin(c) = S/ f ,  i.e., unless 

c : <a)s<b)T((@, 0); (1, l /T) )  or c = <a)s<b>T<(fs, i/f); (1, l /T)) ,  1 <_ i < f. 

Now by Proposition 3.4, 

Ue(((s, 0); (1, l /T) )  = f(((s,  0); (1, f/T)>. 

Hence 

ao(Uef; (a>s<b>T((@, 0); (1, l/T)>) =ao(f ;  (a)s(b)rUe((@, 0); (1, I /T) ) )  

=f~r(e)ao(y; (a>s(b>T((@, 0); (1, I /T))) .  

On the other hand, for the oriented cusp ((@,i/e);  (1, 1/T)), 1 < i < f, we 

have from Proposition 3.4 

- i  Ue((@, i/e); (1, 1/T)) = ~ (((s(e , 0); (1, f /T) )  if (e, s / f )  = f, 
(re----1 

U,(((s, i/e); (1, l /T) )  =fk<((e, i/f); (1, e/r)> 

+ ~ <(@~-~, 0); (1, e/T)> if (f, s/e) = 1. 
(f=, 

Hence we compute using the primitivity of ~s 

ao(Uef; (a)s(b)T((@, i/f); (1, l/T)> = a0(f; (a)s(b)TUe((@, i / f) ,  (1, l /T) )  

= ¢T(e)ao(f; (a)s(b)T<(@, 0); (1, l /T) )  ~ es(x) = O. 
xE(Z/SZ) × 

x------1 (mod S/e) 

We have now shown that ao(Uef) = ao(eT(f)f) in case elS and e is primitive. 

This then establishes (4) and the proof of the proposition is complete. | 

We will need the q-expansion of f at oc, and its computation involves the 

operator "Frobenius" operator Ve on modular forms. Suppose g c Mk(FI(N)),  
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tIN, and g(oo)(q) = E anq'. Then V~ acts by Vt(g)(oo)(q) = E anq ~" In the 

proposition below we give the moduli interpretation of Vt which immediately 

implies that ½g E Mk(Fl(Nt)) .  The formulae in terms of q-expansions show 

that g - VtUtg is annihilated by Ut for all g E Mk(FI(N).  

PROPOSITION 3.13: Let t be a prime. Define ~ :  XI(N~) * X I ( N )  by 

~t(E, x) = (E /(Nx) , ~) for x a point of the elliptic curve E of exact order Nt .  

Then for g E Mk(F,(N)): 
(1) V~(g) = e--(k--1)71";g. 
(2) Suppose tSlN with (S, t) = 1. Then 

ao(Vt(g); (¢Nt, l/S®)) = ao(g; (~N, 1/St)). 

(3) Suppose L is square-flee and SLIN with (S, L) = 1. Then 

ao(HtlL Vtg; (~NL, 1/SL) ) -- ao(g; (~N, 1/SL) ). 

Proof." For (1), we compute 

t-(k- i)(  

- -  ® 

= ,_(k_i>g(Gm/qeZ,¢N>(q>(eq_~_)® (~¢,)®(k-,) 

-- g(oc)(q') ( ~ )  ® ( ~ )  ®(k-2) , 

establishing that ½(g) = £-(a-1)0r;g • 

For (2) we have 

V~(g)((~Nt, l/Sf))(q)(d~q ) ® (_~)®(k-2) 

= t-(k-1)or~(g)(Gm/q z, CNeq lIst) 

= ~-@-')g(Gm/(qZ,¢,),¢N,q ) ( q )  ® - 

= f_(k_l)g(Gmlqe~.,~N(qe)l/Se)(~ ) ® ( ~ ) ® ( k - 2 )  

= g(¢N, l lSt ) (q~) .  

Hence ao(V~g; (~Nt, l/S®)) = ao(g; (~N, 1/St)) .  The assertion (3) then follows 

from (2) by induction. | 
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Recall now that f = w(sE(s, 1). For c primitive set 

h = 1-[(1 - ~r(e)V~)I. 
els 

Then h is a modular form of weight k on F I (N  rlels ~). 

PROPOSITION 3.14: 

(d)h =e~l(d)er(d)h for (d ,N)  = 1, 

Teh =(eT(f)  + £sl(e)ek-1)h for f XN, 

g s l ( e ) e  k l h  for e lT , 

Ueh = 0 for flS if es is primitive. 

Assume es is primitive and set H = E(e, 1)®e~ 1. The function H is a modular 

form of weight k on rl(NS). Computing its Hecke eigenvalues via Proposition 

3.7 we see that  they are the same as the eigenvalues of h given in Proposition 

3.14, and hence 

(23) h = •H for some constant ,~. 

Recall that the modular form h is of level N 1-Iels f" In the above we view it 

as having the larger level NS via the forgetful map. The forgetful map is the 

natural covering XI(M') , XI(M) defined for positive integers MIM' in terms 

of moduli by (E, x) H (E, (M'/M)x) where E is an elliptic curve with a point x 

of exact order M'.  

To compute this constant ,~, consider the oriented cusp (~NS, 1/N} of X I ( N S )  

above (via the forgetful map) the oriented cusp 

((N, 1/T) = ((@, 0); ((x, S/T)> = ((@, 0); (1, S/T)> 

of XI(N). Since a0(f;  c) = 0 for any oriented cusp c of XI (N)  for which S,,~(c) ¢ 
S, we have: 

(24) ao(h; ((NS, 1/N)) = ao(f;  ((NS, I/N)) by Proposition 3.13, (3) 

(25) = ao(f;  (((s ,  0); (¢r, S/T)) 
( -1 )k r (e )L(1  k,e -1  

(26) = - )eT(S)  by Proposition 3.11. 2NTk-1 

We now determine a0(H; ((NS, l /N) ) .  This involves tracing through the defini- 

tion of twisting given in Definition 3.6; we employ the notation used there for easy 
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comparison. Set F = E(e, 1); F is then a modular form of level N. The Dirichlet 

character ¢~1 has conductor S. Let the pair (E, x) consist of an elliptic curve E 

together with an exact NS-division point x. The elliptic curve E' = E/(Nx)  
possesses exact S-division points T~ and ~ with (Nx, y) = ~s. For A E Z / S Z ,  

we have the isogeny ~a~: E . Ex = E ' / ( ~  + ASS). Put  xx = ~ ( x ) .  Then 

(27) H(E,x) = 1/S k+l E E ~s I(p)(-~"~*~F(~a~(E'x))" 
~ez/sz ~E(Z/SZ) × 

For (E, x) = (Gm/q z, CNsql/N), we have 

(28) E'-:-E/(Nx) = Gm/(q z, (s) O-~s Gm/q sz, 

~:~Nq I/T, 

y=q since (Nx, ql/S) = ¢s. 

We now proceed to find (Ex, x~) associated to (E, x) = (Gm/q Z, ~SNqUN). 

(29) E~ = E'/ iy + ~T~) = Gm/(q sz, q((Nql/T) T~) = Gm/(q sZ, ~qX+l).  

Correspondingly we have x~ = ~Nq WT. Substituting into equation (27) we obtain 

(30) S(Gm/q Z, ~NSq l/N) = 

1IS E E -1 -#X SZ eS (Y)Cs F(Gm/<q , (#q;~+'),(Nql/T). 
~ez/sz ~E(Z/SZ) × 

However, we know that  F = E(e, 1) has zero constant term evaluated at the 

oriented cusp 
(Gm/(qSZ, rx X+I\ ~,Stl /, ~Nq 1/T) 

unless ~Nq 1/T is &ale, i.e. its order modulo roots of unity is N. This in turn 

happens exactly when A + 1 =- 0 mod S. Hence 

(31) a0(H; (~NS, 1/N))=I/S E es l(#)(~a°(F; (Gm/(qSZ' (sl) '  ~Nql/T)) 
ue(z/sz)* 

=Sk-1 E eS '  (P)(~a°(F;  <Gm/qS'Z' (T(qS')I/N)) 
~E(Z/SZ) × 

by equation (19) 
- 2N k 

cs(T)eT(--S)T(eT)L(1 -- k, c- ')  
-- 2T k 
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For the last line above use the identities 7-(cs)~-(¢~ 1) = S .  c s ( - 1 )  and 

= = 

We are now in a position to solve for the constant A such that  h = AH as in 

equation (23) .  

(32) h=AH 

a0(h; ((NS, 1/N) )=Aao( H; ((NS, 1 /N)  ) 

(--1)kT(C)CTI (S)L(1 - k, C -1) --A es(T)CT(-S) ' r (eT)L(1  - k, C - I )  
2 N T k - I  2T k , 

the last line using equations (24) and (31). Solving for A again using the identity 

T(C) = T(Cs)T(CT)CT(S)es(T), we obtain 

( 3 3 )  = s )  - 
SCT(_S)  " 

We now determine the q-expansion of f = w;sE(c,  1) at co. 

PROPOSITION 3.15: Set L(S, CT)L(s + 1 k, -x - cs ) =  ~ = 1  ann-S. Then 

(--1)kT(¢s) - L ( 1 - k , ¢ ~ l ) L ( O ,  c r ) + E a ~ q ~  " 

n=l J 

Proof'. Using the notation of the above discussion, 

al(w@E(e,  1); cx~) = el(h; co) = Aal(H; oo) = A. 

Hence by Proposition 3.12 

OO 

w;sE(c,  1)(oc)(q) = ao(w(sE(c , 1); co) + A E a,q'k  
n--1 

The proposition then follows from the determination of ao(wisE(c  , 1); co) given 

in Proposition 3.11. Recall that  for a primitive Dirichlet character X we have for 

positive integers k that L(1 - k ,x)  # 0 if and only if ( -1 )  k = sgn(x)  with the 

one exception ~(0) = - 1 / 2  occurring for the trivial character. Note that this 

then gives L(1 - k, Cs1)L(O, eT) = 0 unless S = N. | 

Denote the conductor of a Dirichlet character X by 

cond (X) = H gcondt(x). 

g prime 
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In general given a pair of Dirichlet characters (a,/3) we now construct a normal- 

ized Eisenstein series E(a,/3) of weight k and conductor N~,~ = cond (a)cond (/3) 

as follows. Define S' and T'  with S'T' = N~,~, (S', T')  = 1 by the requirement: 

f conde(fi) > conde(a)  for primes flS' 
(34) [ cond e(fi) < cond e(a) for primes ~]T'. 

Then we can factor the characters a and/3: 

a = aS, aT,, /3 = /3S'fir': (Z/N~,~Z) x ~ (Z/S 'Z)  x x (Z /T 'Z)  x ~ C x . 

Defining S = cond (/3s'), T = cond (aT,) and adhering to the definition of A in 

Equation (33), set 

Definition 3.16: E(a,/3) 1 w(sE(a/3 -1, 1) ® aS,/3T,. - -  , x ( ~ - l , S  ) 

We remark that E(a,/3) is well-defined vis-a-vis our definitions of partial w- 

operators and twisting. Firstly note that Slcond (a/3 -1) so that w;sE(af i  -1, 1) 

is defined. Next cond(a/3-1)lcond(aT,)Cond(fis,), so E(af1-1, 1) is a modular 

form of level 

N def cond ( a T ,  f i  S, ) = cond (a  T, )cond (/3s') = ST. 

Finally M d=er cond (aS, fiT,) = c o n d  (as,)cond (fiT') divides N so the twisting 

W¢sE(a/3 -1, 1) ® aS'fiT' 

is a modular form of level 

M N  = cond (as,)cond (aT,)cond (fis')cond (fiT') = cond (a)cond (j3) = N~,3. 

Note that if cond e(a), conde(fi) > 0 for a prime glN~,z then the Nebentypus 

character e = afi of E(a,/3) is not primitive. The essential properties of E(a,/3) 
are given below. 

THEOREM 3.17: Set N~,Z = cond (a)cond (/3). 

(1) (d)E(a, fi)=a/3(d)E(a, fi), 
Tt(E(a, ~) )=(a ( t )  + fi(t)~k-1)E(a, fi) for all ~ ~N.,z, 

U6E(a, fi))=(a(e) + fi(e)ek-1)E(a, fi) for all elN , . 
(2) If  L(s ,a)L(s  + 1 - k, fi) = 2,~=l ann -s, then 

o o  

E(a, fi)(oc)(q) = L(O, a)L(1 - k,/3) + E a,~q'. 
n----1 
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Proof." (1) follows from Proposition 3.12 and Proposition 3.7. 

As for (2), applying Proposition 3.15 and equation (14) to the definition of 

E(a, /3)  (3.16) yields 

a n E(c~,/3)(oo)(q) = - L ( 1  - k, ~ ' / 3 s ) L ( O ,  O~T/3T')(C~S/3T)(O) + E '~q ' 
n = l  

where L(s, odL( s + 1 - k,/3) = ~,~=1 ann-~" However observe that for characters 

X:l,)~2 and k >_ 1 with ()~1,12)(-1) = ( -1 )  k we have L(0, Xl)L(1 - k,~2) = 0 

unless one of ~1, ,t2 is trivial. From this it follows easily that 

- L ( 1  - k, a~'/3s)L(O, O : T f l T 1 ) ( O g s ~ T ) ( O )  ----- L(O, a)L(1 - k,/3), 

concluding the proof. | 

COROLLARY 3.18: Suppose ct and fl are Dirichlet characters. Define 

o o  

E(ct,/3)(q) = -L(0 ,  (~)L(1 - k,/3) + E a~q~ 
n ~ - I  

where q = e 2~i: and L(s ,  a ) L ( s  + 1 - k,/3) = E,~=~ a,,n - s .  Then E(a , /3 )  is a 

modular  form of  weight k and level cond (a)cond (/3). 

R e m a r k  3.19: A more conventional proof of Corollary 3.18 may be given by using 

the functional equations for L(s ,  ~) and L(s,/3) to show that E(ct,/3) and its twists 

satisfy the correct functional equations. Hence E(a , /3 )  defines a modular form 

by Weil's Converse Theorem. This is the approach taken in [19]. Constructing 

Eisenstein series via their constant terms as we have done here has the obvious 

advantage that it is possible to conceptually treat the constant terms at all of 

the cusps; this will be necessary for our subsequent consideration of Eisenstein 

ideals. 

We lastly analyze the constant term of the Eisenstein series E(a, /3) .  

THEOREM 3.20: Let  g[a,/3] denote the finite extension of  g generated by the 

values of  the characters a and /3  and set  R = Z[1/(2N~,~), a,/3] with N~,~ = 

cond ((~)cond (/3). 

(1) The constant  term ao(E(c~,/3);c) = 0 for any oriented cusp c with 

Ne(c) < T. 

(2) A s s u m e  (M,  S)  = 1. Then the constant  term ao(E(a, /3);  e) = 0 for any 

oriented cusp c wi th  Se(c) ¢ 1. 
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(3) Assume (M, S) = 1. Then the constant term 

ao(E(a,/3); ((NM, 1/T))  = uL(1 - k, a- l /3)  

for a unit u C R x . 

(4) ao(E(a,/3)) = L(1 - k,a-1/~) • v for a primitive vector v in the lattice 

R[oriented cusps]. 

Proof." Let F be a modular form of level N and ~- a Dirichlet character of 

conductor MIN.  Suppose c is an oriented cusp of X I ( M N )  associated to the 

data (E, x) where E is a Tate curve and x is a point of E of exact order M N .  

Recall the definition of twisting (Definition 3.6). This constructs an isogeny 

¢~: (E , x )  , (E~,x~) for each A E (Z/MZ).  Let cA be the oriented cusp of 

X I ( N )  associated to (E~, x~). We have 

(35) ao(F ® r; c) - 1 M +I Z 
)~EZ / MZ IzE (Z / MZ) × 

Consider F -- (1/A(a/~ -1,  S) )w¢sE(a~  -~, 1) and r = aS'ZT'.  Then  F ® ~- = 

E(a,/3)  and by Proposition 3.11 

(36) ao(F) = L(1 - k, a - 1 / ~ )  E ?'tcC' 
or ien ted  cusps  c 

where each Uc is either 0 or a unit in R. Moreover uc = 0 unless Nm(c) = S 

and Ne(c) = T in the notation of the discussion preceding Theorem 3.17. Firstly 

from the definition of (E~,xa)  we see that if Ne(c) < T then Ne(c~) < T for 

all A E (Z/MZ) .  This implies that ao(F; c~) = 0 for all A E (Z /MZ)  and so 

a0(F; c) = 0, proving (1). 

We now establish (2) and (3). So suppose we are in the case (M, S') = 1, i.e., 

as ,  = 1 and T = /3T. Then since all the isogenies A occurring in equation (35) are 

of degree prime to S we have Se (c) = S~ (c~), and hence (2) follows from equations 

(35) and (36). As for (3), let c = (~MN, 1/T). Then c is the oriented cusp 

associated to the data (E ,x )  = (G,~/q z, ~MNql/T). T h e  computation is similar 

to that of equations (27)-(31). The main points are that E' = Gm/(qZ,(M) 

with the Mth  power map identifying this with Gm/qMZ. Accordingly then • = 

~Nq M/T a n d  ~ = q. We have E~ = Gm/(qMZ,~4ql+~s ) with x~ = ~Nq M/T. 

The group generated by x~ has order modulo roots of unity equal to T if and 

only if M / T  has order T modulo (M, 1 + ,ks}. This in turn happens exactly 
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when A ~ - 1 / S m o d M .  Hence ao(F;ex) = 0 for A ~ ( - 1 / S ) m o d M  and 

a0(F; c(-1/s)) = u'L(1 - k,a-13) for u' E R x by equation (36). Hence from 

equation (35) we have 

(37) a0(F; c) = uL(1 - k, a-1/~) where u = 1/M( E v(P)(o'/S)u" 
~E(Z/MZ)  × 

The term in parentheses is just a Gauss sum associated to T and so u E R ×, 

proving (3). 

For (4), note that from equations (35) and (36) it follows that 

ao(E(a, 13)) = L(1 - k, 0 ~ - 1 3 )  • V for some vector v E R[oriented cusps]. 

By (3), this vector v is known to be primitive in case (M, S) = 1. We will reduce 

the general case to this special case using the formula 

(38) E ( a ' ~ 3 ) ® a s l =  ( H (1-VeUe))FQ/3T,.  
eI(M,S') 

To see this look at q-expansions at ~ using equation (14). If F(~)(q) = 

~-]~n~=o anq n, then 

[E(a,/3) ® a~,l](cx~)(q) = [(F ® T) ® a~,l](q) 

= ~ an°~S'(n)~T'(n)°~s'l(n)qn = E an~T'(n)qn" 
n~--0 n :0  

(~,(M,S'))=I 

But (F ® ~T,)(oc)(q) = ~~n~=oa,~T,(n)q '~, yielding (38). 

Now note the formulae 

Ue(F ® jOT,) = (aT(g) + (asl/3)(g)gk-1)F ® 13T, by Theorem 3.17 

and V~(F®~T,) = g-(k-1)Tr~(F®~T,) by Proposition 3.13, (1). 

Set y = (a~l~)(g) + aT(g)g -(k-l). Then we have for an oriented cusp c 

(39) a0((1 - ½Ue)F ® fiT'; c) = ao( F ®/3T,, (Tre).c). 

Setting 

c' = ((MN,1/T H l/g), 
eI(M,S') 
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we claim that 

(40) ao(( I I  (1-V~U~))FQ~T,;C')=ao(F®~T,;C'). 
el(M,S') 

By equation (39), this will follow from the assertion that 

(41) ao(F ®/~T', (~NT, 1/TL>) = 0 for 1 # L[(M, S'). 

But this in turn follows directly from (2). 

We deduce that 

ao(( ~ (1-VeU~))F®~T,;C')=uL(1-k,c~-I~) 
~I(M,S') 

for a unit u from equation (40) and (3) in Theorem 3.20. Hence 

ao(E(c~, ~) ® c~ 1) = L(1 - k, a - l ~ )  • v for a primitive vector v. 

This in turn means that ao(E(c~, ~)) = L(1 - k, a - l ~ )  • v for a primitive vector 

v, concluding the proof. | 

3.2 R E D U C I B L E  G A L O I S  REPRESENTATIONS ARISING FROM CUSP FORMS.  

Fix a positive integer N and let T be the weight k Hecke algebra for F1 (N) as 

defined in Section 2. Let To = Z<Tt, g XN; (d),d E (Z/NZ)×> C T be the weight 

k restricted Hecke algebra. The full Hecke algebra T is then generated by T0 

and be, giN. Suppose m C_ T is a maximal ideal such that the corresponding 

Galois representation Pm is reducible. We will call such maximal ideals m C T 

reducible. 
Eisenstein series furnish examples of reducible maximal ideals. Let R C C 

be a finite extension of Z[(N] big enough to contain the values of all Dirichlet 

characters of conductor dividing N and set T' = T ® R, T~ = To ® R. Let K be 

the quotient field of R. Suppose E is a normalized weight k Eisenstein series for 

FI(N) with character e which is an eigenfunction of T. Then 

E(~) (q )  = £ a~(E)q n 
n = 0  

with T~(E) = a~(E)E for a prime g XN and U~(E) = a~(E)E for a prime g iN.  It 

is known that  ae(E) E R for all primes g and ao(E) E K[oriented cusps]. Suppose 
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9 C_ R is a prime ideal with associated valuation v~ such that v~(ao(E; c)) > 0 

for each oriented cusp c of XI(N). 

Definition 3.21: Set 

m~)(E, p) =(Tt - ae(E), t~ XN; (d) - ¢(d), (d, N) = 1; 9) C_ '~o, 

m ' (E ,  9) =(mo(E,p) ,  gt - ae(E), t i n  ) c_ T', 

mo(E, 9) =m~ N T0, 

m(E ,  9) = m '  N T. 

Note that the ideals defined above are indeed proper maximal ideals since 

E mod 9 is a cusp form. The Eisenstein maximal ideals of T' (respectively T~) 

are the ideals m ' (E ,  9) (respectively m'o(E, 9)), with E an Eisenstein series in 

Mk(FI(N)) which is a T-eigenform and 9 C_ R a prime ideal dividing ao(E; c) for 

each oriented cusp c of X1 (N). The Eisenstein maximal ideals of T (respectively 

To) are those obtained by contracting Eisenstein maximal ideals of T' (respec- 

tively T~). Note that all Hecke algebras are finite over Z (as modules), hence 

finite over each other whenever there is an inclusion. Hence all maximal ideals 

contract under the extensions of Hecke algebras considered to maximal ideals. 

Also all m ~ C_ T containing a fixed m C_ T are conjugate under Gal (R). 

We can now state precisely the conjecture that all reducible representations 

arising from cusp forms should be detected from congruences with Eisenstein 

series. 

CONJECTURE 3.22: 

1. A maximal  ideal m~o C_ T' o is reducible i f  and only i f  it is Eisenstein. 

2. A maximal  ideal m ~ C_ T is reducible i f  and only i f  it is Eisenstein. 

Our analysis of reducible maximal ideals m~ _C T~ (respectively m ~ C T t) will 

be facilitated by the notion of maximal ideals mo C To (respectively m C_ T) 

which are new of level N. 

Definition 3.23: Say that m~ _C T~ is new in case the semi-simple representa- 

tion p,~ of Gal (Q/Q) does not occur in cusp forms of any strictly lower level. 

Equivalently the eigenvalues for {Te,£ J'N; (d>} associated to m'  occur for no 

maximal ideal of level N' IN ,  N ~ ~ N.  Say that m C T is new if the eigenvalues 

for {T~, £ }~YV; <d); Ue, t iN ' }  occur for no maximal ideal of level N' IN ,  N '  ~ N .  

Lastly a maximal ideal m C T (respectively m0 C_ To) is new in case an extension 

m '  of m (respectively m~ of T~) is new. 
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Suppose a and/3 are Dirichlet characters with cond (a)cond (/3) = N and c = 

a/3 satisfying e ( - 1 )  = ( - 1 )  k for an integer k _> 2. We then have a,/3: Gal (Q/Q) 

, R × C C × . In Section 3.1 we constructed and studied the weight k Eisenstein 

series E(a , /3)  on F1 (N') with character e. Recall that  E(a, /3)  is normalized and 

an eigenfunction for the Hecke operators {T~,g XN; U~,glN; (d)}; the eigenvalues 

are given in Theorem 3.17. Such an Eisenstein series will be called a new Eisen- 

stein series of level N. The space of Eisenstein series of weight k for F I (N)  is 

spanned by the new Eisenstein series E(a, /3)  of all levels N'IN together with their 

push-ups under the natural  degeneracy maps to level N. In particular if m0 is an 

Eisenstein ideal of To then mo = mo(E(a , /3) ,  p) with cond (a)cond (/3) = N'IN.  

Let 7re: R × * (R /p )  × be the natural  map and put ~ = 7rp o a,  ~ = 7rp o/3. 

We then have Pmo = ~ @ ~X k-1 where X is the p-cyclotomic character. Hence 

one direction of Conjecture 3.22 is clear - Eisenstein maximal ideals are always 

reducible. To classify reducible ideals we adopt the following notation: 

Detinition 3.24: Suppose a and ~3 are Dirichlet characters with 

cond (a)cond (/3)IN. For an integer M define the ideals 

I(a,/3) '(M) =(Te - (a(g) + gk-1/3(g)) for g XMN; 

Ut - (a(g) + gk-xfl(g)) for tIN, e XM; (d) - e(d)) C_ ~ ,  

I(a,/3)o(M ) =(Te - (a(g) - ek-1/3(e)) for g ~MN; (d) - e(d)) c_ T~o, 

I(a,  /3)( M) =I(a,  /3)' ( M) n T, 

I(a,  /3)o( M) =I (a , /3 )o (M)  n To. 

Furthermore we set I(a,/3)' = I(a,/3)(1), I(a,/3)'o = I(a,/3)o(1); I(a,/3) = 

I(a,/3)(1), and lastly I(a,/3)0 = I(a,/3)o(1). 

We can immediately say the following about reducible ideals. 

PROPOSITION 3.25: Let T be the weight k Hecke algebra for F I ( N )  and let 

m C_ T be a reducible idea/ of  residue characteristic p with mo = m N To. 

Suppose Pm = -~ @-~X k- l ,  where X is the cyclotomic character at p. Let p be 

a prime of R o£ residue characteristic p and a,  /3: Gal (Q/Q) , R x C C x 

Dirichlet characters such that H = 7rp o a, -~ = 7r~ o/3. 

(1) I(a,/3)(P)o C_ mo. 

(2) Suppose p > k and p ~N. Then p ~cond (a)cond (/3) and I(a,/3)0 C m0. 

Proo~ The representation Pm occurs in H~(YI(N)~, -@)[m] v. Hence (1) 

follows from the Eichler-Shimura relations. For (2) the crystalline theory is 
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required. Specifically recall the definition T crys _p = Fp + (p)F t, where Fp denotes 

Frobenius and F t is its adjoint with respect to the inner product .  Hence from 

T crys is  the representat ion Pm we see tha t  T crr~_p = a(p) +/3(p)p k-a. But  then _p 

associated to Tp t as in Theorem 1.2, (2). Hence Tp - (a(p) +/3(p)p k - l )  E m T ' ,  

concluding the proof of the proposition. | 

Hence for a reducible ideal m in the weight k Hecke algebra T for F t ( N )  what  

is unknown are the residue characteristic and the eigenvalues of the Ue mod  m.  

If  N = geN' with (N ' ,  g) = 1, then relating the eigenvalue of Ue to Eisenstein 

series is a s tudy  of bad reduction. We are able to execute this p rogram in two 

impor tan t  cases. The first is the case when e = 1 and the Nebentypus  character  

is trivial. This is the case of semi-stable reduction at g where Picard-Lefschetz  

theory can be invoked. The second is the case of a Nebentypus  character  which 

is very ramified at ~. Here the Good Reduct ion Theorem of K a t z - M a z u r  [11] can 

be applied. In the next two subsections we take up the analysis of these cases of 

bad reduction. 

Note tha t  to classify reducible modular  Galois representations associated to 

cusp forms it suffices to classify those which are new. When  analyzing the eigen- 

values of Ue associated to a reducible ideal m C_ T and a prime of bad reduct ion 

e we will systematical ly  work under the simplifying assumption that  m0 C To is 

new. If  m is new at N,  it is an open problem to classify all extensions to levels 

N' with N[N'. 

3.3 GEOMETRY modg:  THE CASE ¢ > 1. Suppose N = g~. N I with 

(N ' , g )  = 1. For our purposes the best integral model of YI(N) for s tudying 

the bad reduct ion arises from Yb~I(N)/zEcNI, the moduli  scheme for balanced 

Fl (N)-s t ruc tures .  A balanced F l (N) - s t ruc tu re  on an elliptic curve E / S  with S 

any scheme is a d iagram 
l r  

P; F.~----E'. 0 

where E' is an elliptic curve over S, ~r is an N-isogeny with dual isogeny ~.t, 

and P ,  Q are Drinfeld bases of Ker 7r, Ker 7r t respectively. The curve xb~I(N) is 

geometrically reducible but  connected over Z. The d iamond operators  ( ) x ( ) 

which we shall short ly define then operate semi-linearly on xb~I(N)/z[(N] since 

they exchange the ( g ' s .  The curve xb~l(N)/z[;u] is reducible; any component  is 

then a model  of Xx(N) over Z[(N]. 
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We recall results of Katz-Mazur [11] concerning yD~I(N)/z[(u I and its special 

fiber Xs in characteristic 2. As notation, let Fe denote a Frobenius element at 

2 and for a natural number m write E (m) for the image of the elliptic curve E 

under F ~ .  For g + h = e, denote by Cg,h the Igusa curve classifying elliptic 

curves E endowed with Fl(NI)-level structure together with a generator W of 

Ker(Ve m~×(g'h)) C_ Em~x(a,h). The special fiber 

X s  = U (Ze/~min(g'h)ze) × X Cg'h 
g-I.-h=e 

with all the irreducible components Cg,h meeting at the supersingular points. The 

geometric special fiber X~ is then the union of geometric Igusa curves C~:h = 

C9, h x ~e. Let Ve denote Verschiebung at 2. The map 

(42) C9, h X (Ze/2min(g'h)7/qo.) x * Xs is defined as follows: 

If 9 -> h, (E, W, u) ~ isogenies with Drinfeld generators P,Q: 

E(g ) v~ , E F~, E(h) p = W, Q = u. v [ - h ( w )  and dual 

E(g ) , F~ E ,, v~ E (h) P = v~-hw,  Q = u. W. 

There is an action of (Z /NZ)  × x (Z /NZ)  × on xb~I(N) by letting (a,b> send 

the data P; E ~T E'; Q to aP; E ~-  E'; bQ. The action of (a, a -1) is simply 

the diamond action (a / on XI(N).  And the action of (1,b} is via (Z /NZ)  × = 

Gal(Q(#N)/Q) .  This is because the usual model of YI(N)/Q is obtained by 

dividing Yb~I(N)/Q(,N ) by the action of (1, b> . Then 

YI(N)/Q QQ-Q = Yb~I(N)/Q(uN) ®Q(,N)Q" 

If a c Gal (Q/Q) acts on the second factor of the first tensor product, it cor- 

responds to (1, b) ®Q(~) a on the second factor (if alQ(~N) = b). Hence on 

fibers over ~e, inertia at e acts via (1, b>. Generally the action of (a, b) corre- 

sponds to P ~ aP, u ~ ba-lu if g ~ h and P ~ bP, u ~ ba-lu if fl > g. In 

particular the (g, h, u)-component of Xs is stabilized by the subgroup K(g, h) = 
{(a, b)l ab -1 _= 1 modemin(g'h)}. Let X1, ~22: (Z/NZ) × × (Z/NZ)  × " (Z/N~')  x 

denote projection onto the first and second factors, respectively. Set 

(43) Im(K(g,h)) = { xl(K(g'h))m°d29x2(K(g, h)) mod2 h ifif g g >-<_ h.h } = (Ze/2m~,x(g,h)ze) × 
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Then  K(g,  h) acts  on a componen t  Co,h of Xs through I m K ( g ,  h). 

Let q~: E ~ YI (N)  be the universal elliptic curve with eompact i f ica t ion 

•: E , X I ( N ) .  Fix a pr ime ~'N and recall tim nota t ion  (for k _> 0) 0p = 

Op(k) = S y m m  k-2Rl~,7/,p.  The  restrict ions of the sheaf  0v(k)  to the various 

componen t s  of X~. will still be denoted by l)p(]C). Denote  by .~'-°rds the ordinary  

locus of the geometr ic  special fiber X.v. Note tha t  

H!l(X°~a,i);(k)) . Hl(X~,'flp(k)) is surjective and 
= H, 1 ~-ord, x . H , l ( ) £ ° r d , 0 p ( ~ ) )  l~9+h=e . ( '..h O p ( k ) ) , ~ M a p  ((Zg/otmin(9 'h)z f)  . Z g )  

(44) 

By Vanishing Cycle Theory  there is an injection 

(45) HI(xg ,  Op(k)) ~ H l ( ) ( g ,  f)p(k)). 

The  Good  Reduct ion  Theo rem of Katz  Mazur  [11, Theorem 14.5.1] (adding 

auxil iary level) asserts tha t  (45) is surjective on the e-eigenspaces for the ac- 

t ion of the d iamond  opera tors  if cond e(e) > e/2.  
1 --ord 

Now suppose 0 ¢ z E H! (Cg,h, @(k ) )  is a cohomology class which transforlns 

under  (a,a -1) via e and under  (1,b) via c~-l(b). Then  generally z t ransforms 

under  (a, b) via e(a)/a(ab). From the preceding discussion we see tha t  

If g >_ h, then 

(1, b) opera tes  tr ivially if b - 1 rood gh implying o, - 1 on 1 + ghZe. 
(a,a -1) opera tes  tr ivially if a - 1 m o d g  g implying e = 1 on 1 + fgZe. 

I f h  > g ,  then 

(a, 1) opera tes  tr ivially if a - 1 m o d g  ~ implying e --- a on 1 + gaze. 
(a,a -1} opera tes  tr ivially if a -= I m o d t  ~h implying e - 1 on 1 + ghze. 

From this we deduce the following: 

1 --oral 
PROPOSITION 3 .26 :  Suppose 0 7 ~ Z E H! (Cg,h , ~p(k ) )  is a cohomology class  

which t ransforms under  (a, a -1} via e and under (1, b) via a - t ( b ) .  Then e and 

a are characters modg "~ax(9'h). Furthermore, i f  g >_ h, then a is trivial on 
1 + fmin(g'h)Ee. I [h  ~ g, then COL -1 iS trivial on 1 + fmin(g'h)• e. 

Final ly we need several facts concerning the correspondence Ue. 

46: The correspondence Ue on Xs is determined by its action on the ordinary 

locus. There applying the modular definition as, for example, in [18, Corollary 

8.4] we see that: 
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On C~,o, Ue = Ft + maps into C~-l,u , u C (Z/£Z) ×. 

On Co,~ ,Ue = F~ = Ver. 

Hence if ~ is primitive there are two cases for U~. 

47: I f  ~ is not primitive at £, then by the modular defnition of U~ it is a 

projection operator from level N = £e to level e ~-1 (assuming e > 1). 

Hence for new representations if e is not primitive then Ut -- 0. 

We are now in a position to analyze maximal ideals in the Hecke algebra such 

that  the corresponding Galois representation is reducible. So let 

T = Z(T~, ~ XN;Ue, g IN; (d} ,de  ( Z / N Z )  ×} 

be the weight k Hecke algebra for F I ( N )  and suppose m C_ T is an ideal of 

residue characteristic p with (d) - c(d) E m T '  such that  Pm is reducible, say 

Pin -- a • /~) /k-1  with • as usual the p-cyclotomic character. By the crystalline 

theory (Proposition 2.3) the characters a and/~ of Gal (Q/Q) are unramified at 

p i f p > k .  

As previously we let Op = Op(k) denote the torsion sheaf Op(k)/pt~p(k) on 

X I ( N ) .  Then the T[Gal (Q/Q)]-module H I ( x ,  Op(k))V[m] has a Jordan-HSlder 

filtration with all constituents equal to constituents of Pm. In particular there 

is a cohomology class 0 ¢ z' C Hl(X~,-Op(k))[m] such that  the line it gen- 

erates is T[Gal (QdQe)]-  invariant with (d) .  z' = s (d) .  z' for d • ( Z / N Z )  x. 

By the Good Reduction Theorem of Katz-Mazur  z' arises from a class 0 

z" e Hl(Xv,-Ov(k))[m] if condt(e)  :> e/2. But ,,~zlrv°rd! ~"~ ,-~p(k)) surjects onto 

HI(X~,Ov(k))  by (42). Then the I-Iecke eigenvalues and Galois representations 

lift. 

PROPOSITION 3.27: Suppose p > k, ~ is primitive at ~, and P m =  a ® ~)i k-1. 

Then a/3 = e, a or/3 is unramified at ~, and Ue = Trace of Fe on the unramified 

part. 

Proof." Recall that  H 1 corresponds to the dual of Pm. By 3.26 and 46 we see 

that  if e is primitive then either 

1. g = e, h = 0, a is trivial on inertia at ~, and Ue = a ( Q  or 

2. g = 0, h = e, a = e on inertia, and Ue = f k - t ( e ~ - l ) ( f ) .  This establishes 

the proposition. | 

Note that  if e is primitive then any m is new. We now take up the case of 

non-primitive e. 
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PROPOSITION 3.28: Let the level N = g¢N' with (g, N')  = 1, e > 1. Suppose 

p > k, ~ is not primitive at g, and m C_ T is new. Then Ue • m.  Moreover 

ire  > conde(e) > e/2 >_ 1 and P m =  a @ /3X k-1 OCCURS in cusp forms of type 

(N, k, e), then e > conde(a)  + cond e(/3). 

Proof'. The assertion is just a restatement of the fact (47) and the discussion 

preceding Proposition 3.26. | 

3 . 4  SEMI-STABLE REDUCTION AT g: THE CASE e = 1. Let g be a prime, N = 

gN' with (N' ,  g) = 1, and ~ be a Dirichlet character defined on ( Z / N ' Z )  ×. Denote 

by "2 the Hecke algebra for Sk (Fo(N) , e ) - -~  is the Z-subalgebra of 

Endc ( sk ( r0 (N) , c ) )  generated by Tr, r ~N ; U~, rlN; and (d), d • ( Z / N Z )  x. 

Suppose m C_ T is a new maximal  ideal of residue characteristic p with p > k, 

(p, N)  = 1 such that  the representation Pm is reducible. The crystalline theory 

(Proposition 2.3) shows that  Pm = o~ ~/3X k-1 where X is the p-cyclotomic char- 

acter and e = a/3. Moreover the characters a and/3  are unramified outside N; 

in particular they are unramified at p. As usual, for r /~N the Eichler-Shimura 

relation gives: 

(48) T~ - (a( r )  +/3(, .)rk-~) • r o T ,  

where T' = qi" ® R. Also the crystalline site gives us as usual that  

(49) Tp - (ol(p) q - /3 (p)pk-1)  • mTff . 

The purpose of this subsection is to examine the action of Ue in this case of 

semi-stable reduction. To study Ue we consider the bad reduction at g of Xo(N) .  

The special fiber of X o ( N ) / Z e  consists of two copies of x o ( g ' ) / ~ e .  Recall that  

¢: E , Yo(N) is the universal elliptic curve and Op(k) = S y m m k - 2 ( R l ¢ . Z v ) .  

In general suppose ~ is a Zp sheaf on X I ( N )  and T: ( Z / N Z )  x - O x is a 

character. Then we define 5t'r to be the largest subsheaf of 9 v ®zp O where 

(d) acts via r(d) for d • ( Z / N Z )  x Let 7r: X I ( N )  , Xo(N)  be the natural  

projection. We then set 9t'(r) equal to the sheaf 7r.(grr) on Xo(N) .  Now we 

apply this construction to the sheaf On(k ). View the character ~ as taking values 

in an extension O of Zv. Then we have the sheaf Op(k)(e) on Xo(N) .  Since 

has no component at g, the sheaf 0p(k) has "good reduction" at L So Picard- 

Lefschetz theory tells us that  the action of inertia at g is given by the local 
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contribution at the double points E. Specifically we have the maps 

(50) H~(Xo(N) @Fe, Op(k)(e)) , HI(Xo(N) @Fe,Op(k)(e)) 

* Ha(Xo(N)®-Qe, Op(k)(e)). 

Let Ie C_ Gal (Qe/Qe) denote the inertia subgroup. Then for any a C Ie, 

(a - 1)gl(Xo(g) @ Qe, Op(k)(¢)) is contained in 
(51) Image (H~(Xo(N) ®~e,Op(k)(¢)) * HI(Xo(N) ®Qe, Op(k)(e))). 

PROPOSITION 3.29: 

(1) I fa  • Ie, then (a - 1) 2 = 0 on HI(Xo(N)®Qe, Op(k)(¢)). 

(2) For a • Ie, (a-1)HI(Xo(N)®-Qe, Op(k)(¢)) C_ SZ(Xo(N) xQe , 0p(k)(~)) I*. 

Proof: Obviously (2) is simply a reformulation of (1). The assertion follows 

from SGA 7, exp. 15. There it is stated only for constant coefficients. However 

the proof applies verbat im to the case of locally constant coefficients. II 

In particular inertia at ~ acts unipotently so on a one-dimensional space it must 

operate trivially. It follows that  the characters (~ and/3 are unramified at 6. 

Now observe that  

(52) H~(Xo(N) @ Fe, Op(k)(e)) 

xEZ 

This decomposition makes it easy to see the action of the arithemetic Frobenius 

Frobe = Fe. The morphism Frobe acts on F(~,  0p(k)(~)) as we. To determine its 

action on H~(Xo(N) ®Fe, Zp), it suffices to consider the local picture of a double 

point. Let then X be two lines crossing at a point Q.Then 

H~(X, Zp) = Coker (F(X - Q), Zp) *- F(X, Zp)). 

Now F(X - Q), Zp) - Z 2 and F(X, Zp) -~ Zp. The quotient is one-dimensional, 

generated by one component or minus the other. So switching the components 

at the double point acts as - 1 .  But we acts on Xo(N) ® Fe by switching the 

crossing components at each point of Z. Hence we acts on H~(Xo(N) @ Fe, Zp) 

as - 1 .  Hence we have the theorem: 

THEOREM 3.30: 

(1) Fe acts on H~(Xo(N) ® Fe,0p(k)(~)) as -w~ -1 

(2) Fe = - w [  1 on (a - 1)HI(Xo(N) x Qe,Op(k)(¢)) c_ HI(Xo(N) ® Qe, 
Op(k)(e)) It [or any a • Ie. 
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We r emark  tha t  for the case e = 1 we have tha t  Ue + we is a pro jec tor  to 

lower level. Hence since m is new Ve = -we  on H~r(Yo(N),Op(e))[m ] where 

-Op = Ov(k)/pO~(k). The  eigenvalues of Fe -1 act ing on glp~r(Yo(N), 0p(e))[m] are 

a (g ) f  k-1 and 3(~). Since Fe -1 = Ue on (a - 1)H~(Yo(N),Op(e))[m] we deduce: 

PROPOSITION 3.31: The scalar by which Ue acts on Hl~r(Yo(N),-Op(e))[m] is 

one of {a(e), ~(e)ek-1}. 

Note t ha t  since Pm = a ® 3X k-1 we have tha t  km is genera ted by the values 

of a and 3. Thus  km G R/p .  

Since U~ = w~ = ~k-253(~) ,  there are two cases: 

(53) (i) If  U e = a ( t ) ,  then  gk-2 = a/~(g) m o d p .  

(54) (ii) If Ue=fl(g)g k - l ,  then gk = a/~(g) m o d p .  

Assume t h a t  k > 2 for s implici ty and set 

(55) ~?(~, 9; e)l=~(e)E(a, 9) - weE(a, ~), 

(56) E(a , /3 ;  t ) 2 = 3 ( t ) e k - l E ( a ,  Z) -- weE(a, 3). 

For i = 1, 2 the Eisenstein s e r i e s / ) ( a ,  3; ~)i are defined whenever  

(2, N~,Z d=ef cond (a )cond  (Z)) = 1 

and are modu la r  forms of level t?N~,z. They  are eigenfunctions of the res t r ic ted 

Hecke a lgebra  To with the same eigenvalues as E(a,/3). Use the formulae we + 

Ue = Tt and Uewt = gk--lafl(g) to compute  

(57) (i) u,~(a,  z; e),=a(e)~(a, 9; e)~, 
(58) (ii) u ~ ( a ,  9; e)~=z(e)ek-~(~, z; e)~. 

We now normal ize  the / ) (a , /3;  f)i ,  i = 1, 2. Observe t ha t  since E(a,/3) has 

level N~,¢ which is pr ime to 2, we have 

(59) w~ E( ~, ~) = ~ E( a, ~) = ek- ~ V~ E( a, ~), 

using the  no ta t ion  and results of Propos i t ion  3.13 for the covering 7re: XI(N~,¢~) 

Hence the q-expansion of weE(a,~)  at  ec has 51 = 0. We 

1 - 

(60) E(a, Z; e)l= j ( ~  E(a, Z; e)l, 

1 /~(a, Z; 2)2. (61) E(a,/3; g)2= 3(g)gk-~ 

. X~(N~,~). 
therefore set 
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Then for i = 1, 2 E(a,/3;  g)i is normalized, i.e., its q-expansion at oo has a l  ---- 1. 

It  is an eigenfunction of the Hecke algebra To and also an eigenfunction of Ut 

with eigenvalues given in equation (57). Hence we have constructed Eisenstein 

series which give packages of Hecke eigenvalues corresponding the the possibilities 

of Proposition 3.31. 

3 . 5  REDUCIBLE rn C_ T ARE EISENSTEIN.  We retain our previous nota- 

tion; in particular T denotes the weight k Hecke algbra for F I (N) ,  R is the 

finite extension of Z generated by the N t h  roots of 1 together with the values 

of all Dirichlet characters of conductor dividing N, and T ~ = T ® R. Sup- 

pose m C_ T is a new reducible maximal ideal of residue characteristic p > k, 

p /~N associated to a cusp form of type (k, N, ~). We suppose Pm ---- ~ (~ ~X k-1 

where X is the p-cyclotomic character. By the crystalline theory ~ and ~ are 

unramified at p. Let cond (H), cond (~) be the Artin conductors of H, ~ (defined 

as products of local factors over all places except p). By Carayol [2] or Livn6 

[13], N~,~ = cond (~)cond (~)]N. Let m '  C_ T be a maximal ideal of T' lying 

over m,  i.e. m ~ N T = m.  The ideal to = m t M R is prime and km C_ R/go. The 

natural  projection 7rp: R x , (R /p )  × maps the N th  roots of unity PN C_ R × 

isomorphically onto #N C_ ( R / p )  ×. Set i = 7ret#N. Define liftings of ~ and ~ to 

Dirichlet characters by setting a = i -1oK,/3  = i -1 o~. Then cond (a) = cond (~) 

and cond (/3) = cond (~), so N~,f~ = N~,~IN.  

The eigenvalues of Tt mod m,  t XN, and (d) mod m are known (cf. Proposition 

3.25); namely I(a, /3)0 c_ m0. Suppose g is a prime and N = geN~ with e > 1 

and (N' ,~)  = 1. Set T = T ® Z [ a ,  fl], T O = T Q Z [ a ,  fl], m~ = moT~, and 

m ~ = r o T .  The previous two sections determine the eigenvalues of U~modm,  

which we restate here for convenience. 

THEOREM 3.32: 

(1) I [¢  is pr imi t ive  at £, then Ut - (a(e) +/3(t)~ k- l )  E m and one o f  a,~3 is 

unramified at ~. 

(2) I [~  is not  pr imi t ive  at  £ and e > 1, then Ue E m .  I [ c o n d t ( e )  > e /2  >_ 1 , 

then e >_ cond t (a)  + cond t(/3). 

(3) I£¢ is not  pr imi t ive  at t and e = 1, then a and fl are unramified at t and 

either Ut - a(£) E m or Ue - /3 (e )£  k-1 E m.  

We now show that  in any of the above cases we can construct an Eisenstein 

series with this package of eigenvalues. The Eisenstein series we take will be 
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a modification of the Eisenstein series E(a,/3). Define operators  At for giN 

according to the cases of Theorem 3.32 as follows: 

CASE 1: Suppose c is primitive at g. Then set A~ = 1. Note tha t  in this case 

cond e(a) + c o n d  e(/3) = e. 

CASE 2: Suppose E is not primitive at g and e > 1. If  bo th  a and/3  are ramified 

at g, set A~ = 1. If  one of a or/3 is unramified at g, then cond e ( a ) + c o n d  t(/3) < e. 

In this case set At = 1 - V~Ue. 

CASE 3: Suppose z is not  primitive at g and e = 1. If Ue - a(g) • m,  set 

~(e) + we 
At = 

If Ue - /3(g)gk-1  • m,  set 

At = 

Now consider the Eisenstein series 

/3 (~)~k-1  __ Wg 

/3 (~) t  k - 1  

(62) /~ = (ne iNae)E(a , /3) ,  

and let E be the scalar multiple of /~  which is normalized. If E has q-expansion 

at oz given by E(oo)(q) oo = ~ n = 0 a - ( E ) q  then a l ( E )  = 1, TeE = a t ( E ) E  for 

primes t /[N, UtE = a t ( E ) E  for primes t [N,  and (d)E = ¢(d)E. Moreover, we 

have tha t  

(Tt - at(E),  e XN; Ut - at(E),  e[N; (d)) C_ m ' .  

Let f be the normalized cusp form with coefficients in k = T / m  associated to 

m.  Then  f - E has q-expansion at cx~ equal to a constant .  We deduce cases 

where this constant  must  be 0, and hence where E rood p is a cusp form, from 

the following lemma. 

LEMMA 3.33: Suppose f = 1 is the q-expansion about  a multiplicative cusp of 

a modular form m o d p  of weight k on F I ( N ) ,  (N,p)  = 1. Then p -  1 divides k. 

Proof'. There are two natura l  "degeneracy" maps for a prime g, namely B1, Bt:  

Yo(Nt)  * Yo(N). The map B1 is defined in terms of moduli  as (E,  x) ~-~ (E,  ~x), 

where x is a point  of the elliptic curve E of exact order N L  This is the usual 

forgetful map  and corresponds to the map on the Poincar6 upper  half plane given 
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by z ~-, z. The map Be is defined in terms of moduli as (E, x) ~ (E / (ex ) ,~)  and 

corresponds to the map z ~ ez on the Poincar~ upper half plane. 

There are two cusps of Yo(NQ lying above the multiplictive cusp of Yo(N) 

about which f has the q-expansion equal to the constant 1. One of the cusps will 

be ~tale at g and the other will be multiplicative at g. It is easily seen that B~( f )  

has q-expansion about both these cusps of ]~(NC) equal to 1, whereas B~( f )  

has q-expansion about the Gmultiplicative cusp of gk and q-expansion about the 

g-6tale cusp equal to 1. 

Under the assumption g - l m o d N  we then must have B~( f )  = B~( f )  = 

~kB~(f),  so gk ~ l m o d p .  Since this holds for all g = l m o d N  and (~,N) = 1, 

this means that (p - 1)lk. | 

The Eisenstein series classically denoted Ep-1 of weight p - 1 on SL(2,  Z) 

has q-expansion congruent to 1 modp, showing that the q-expansion about a 

multiplicative cusp f = 1 does indeed arise when the weight k is divisible by 

p - 1 .  

We now compute the constant term of E. For primes g in Case 3 above, we 

use the following. 

PROPOSITION 3.34: Suppose N = gN' with (N' ,g)  = 1. Let g be a modular 

form of weight k and level N' ,  so weg has level N. 

(1) The modular form (ct(t) - we)g has constant term c~(g)(1 - gk-1)ao(g; c) at 

an g-multiplicative cusp c, a(g)(1 - 1/f)ao(g; e) at an f-dtale cusp c. 

(2) The modular form (3(f)~k-1 _ we)g has constant term 0 at an f-multi- 

plicatiye cusp, (gk-1/3( g) -- a( e)/g)ao(g; c) at an f-dtale cusp c. 

Analyzing the effect of primes g in Case 2 is more laborious. We will proceed 

via a series of propositions. 

PROPOSITION 3.35: Let f E Mk(Fa(N)) with N = gaN' for g a prime, 

a >_ 1, and (g, N')  = 1. Suppose R is a Dedekind domain such that ao(f)  • 

R[orientedcuspsof X1 (N)] is primitive. Assume that there exists an integer 0 <_ 

b <_ a such that ao(f ;c)  = 0 if c is an oriented cusp of X I ( N )  with N~(c) = 

gbN~(c) with (e,N~(c)) = 1. Then for any unit ~ • R x, ao((~r~ - )~r~)f) • 

R[oriented cusps Of Xl(Ng)] is primitive. 

Proof: For a cusp ~ of Xx(Nt) ,  routine computation shows that: 

If glN~(5), N~(~r~5) = N~(5)/t. If g XN~(5), N¢(~r~5) = N~(5). 

If giNm(5), N~(Tr,5) = N~(5). If g ,~Nm(5), N~(~reS) = N~(5)/g. 
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Let  p be  a p r i m e  of R a n d  s u p p o s e  ao(F) ¢ 0. B y  h y p o t h e s i s  one  of the  

fo l lowing  two  eases  holds .  

Case  1. T h e r e  is an  o r i e n t e d  cusp  c = ( ¢ , i / N e ( c ) )  w i th  

a o ( f ; c ) ~ O m o d p ,  ve(Nm(c))>_ 1, 

a n d  a o ( f ;  c ' )  = 0 m o d  ~,~ for all  c' w i t h  

ve(Ne(e)) - ve(Ne(c')) = 1. 

Case  2. T h e r e  is an  o r i e n t e d  cusp  c = (¢, i/Ne(c)) w i t h  

a o ( f ; c ) ~ O m o d p ,  ve(Nm(c)) >_ 1, 

a n d  a o ( f ;  c ' )  = 0 rood  S.~ for a l l  c '  w i t h  

ve(Ne(d)) - ve(Ne(c ) )  = 1. 

In  Case  1, cons ide r  the  cusp  e = (¢~/e i/Ne(c)). T h e n  rre(~) = c a n d  N~(rq~)  = 

N~(~)/t = N~(c)/L Hence  

* . ~ . ~ 

ao( ( r r ;  - Aw e ) f ,  e) = a o ( f ;  5) - Aao(rref; c) 

= a o ( f ;  a) - A a o ( f ;  (Tre).3) ~ - ) ~ a o ( f ;  c) rood  p.  

In  Case  2, cons ide r  the  cusp  e = (¢l/e,i/gN~(c)). T h e n  rq(~)  = c a n d  

N~(~re3) = N,(~) = N~(c) + 1. Hence  

ao( ( r r ;  - A r r ; ) f ;  e) = a o ( f ;  c) - A a o ( r r ; f ;  3) 

= a o ( f ;  c) - Aa0 ( f ;  (rre),~) = a 0 ( f ;  c ) m o d p .  

So in e i t h e r  case  ao((rr~ - A 7 r ~ ) f )  ~g 0 rood  p for each  p r i m e  p a n d  l a t t i c e  e l emen t  

ao( ( r r ;  - ATr~)f) e R[oriented cusps  of X,(Ng)] 

is p r i m i t i v e .  II 

PROPOSITION 3.36: Let a and/3 be Dirichlet characters of conductors c o n d  ( a )  

a n d  cond  (/3) respectively. Suppose N~,Z = cond  ( a ) c o n d  (/3) = gaN'Z  for  g a 

prime, a >_ 1, and (~,N',~) = 1. I ra  is unramified at g, then ao(E(a,/3);e) = 0 

for  any oriented cusp  e of XI(N~,o) with ve(Nm(c)) = O. If/3 is unramil%d at ~, 

then ao(E(a,/3); e) = 0 for  any oriented cusp c of Xt(N~,~) with ve(N~(c)) = O. 
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Prook We recall the no ta t ion  of Definition 3 .16.  We factor N~,Z = S'T' where 

conde(/3) > conde (a )  if glS' and conde (a )  _> conde(13) if tIT'. Moreover we set 

S = cond (/3s') and T = cond (aT,) .  Then  wgsE((~/3 -1, 1) is a modu la r  form of 

level ST. Also f rom Propos i t ion  3.11 we have 

(i) If glS, ao(w~sE(a/3 -a, 1);c ' )  = 0 for any oriented cusp c' of Xx(ST) with 

v e ( N m ( c ' ) )  = o. 

(ii) I f  glT, ao(w¢sE(a/3 -1, 1); c') = 0 for any oriented cusp c' of XI(ST)  with 

= o .  

Suppose in general  tha t  E is a ]?ate curve and x is a point  of E of exact  order 

N.  Let  A: (E,  x) - (E~, x~) be an isogeny of degree pr ime to N.  Then  x~ is of 

exact  order N and N~(x~) = N~(x). Now 

1 
E(a , /3 )  : )~(a/3_1 ' s)w(sE,(a/3-1,1) ® as'/3r' 

and g ~(cond(as , )eond( /3T , )  by the hypothesis  tha t  a or /3 is unramif ied at  

g. Hence from t h e  definition of twist ing (3.16) we see tha t  for any oriented 

cusp c on XI(N~,o), ao(E(a,/3); c) is a linear combina t ion  of t e rms  of the form 

ao(w;s E(a /3  -1 ,  1); c') with c' a cusp of XI(ST) satisfying ve(N~(c')) = ve(N~(c)). 

Hence the proposi t ion follows from (i), (ii) above. | 

PROPOSITION 3.37: Let a and 13 be Dirichlet characters of conductors cond (a) ,  

cond (/3) respectively. Suppose that the p r ime  g divides cond (a )cond  (/3) = 

N~,t3 and one of a or /3 is unramiIied at g. Then ao(1 - VtUe)E(a,/3)) = 
L(1 - k, a-1/3)  • v, where v is a primitive vector in the lattice Z[1/N~,z,  a , /3]  

[oriented cusps of  X1 (N~,f~Q]. 

Proof: By Theo rem 3.17, 

UeE(a, 13) = ApE(a,/3) with Ae = a(g) + 13(g)gk-1. 

As a(g)  = 0 or/3(g) = 0, it follows tha t  )~e is a unit  in the ring R = Z[1/N~,z,  a,/3]. 

Now 

(1 - VeUe)E(a,/3) = (Tr~ - Atg-(k-1)rr~)E(a, /3) ,  

cf. Propos i t ion  3 .13 .  The  lat t ice element 

( l / L ( 1  - k, a - l / 3 ) ) a o ( E ( a , / 3 ) )  • R[oriented cusps of Xl(N~,~)] 
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is primitive by Theorem 3.20. Hence from Propositions 3.35 and 3.36 we deduce 

that  

ao((1 - VgUe)E(a,/3)) = L(I  - k , a - t / 3 )  • v 

where v is a primitive vector in the lattice R[oriented cusps of X,(N~,og)]. | 

Putt ing all this together we can therefore settle the following case of Conjecture 

3.22: 

THEOREM 3.38: Let T be the weight k Hecke algebra for FI (N) .  Suppose 

m C_ T is a new reducible maximal  ideal of residue characteristic p with p > k + 1, 

p XN. Then m is Eisenstein (of level IV). 

Proof: Suppose Pm = ~ • ~X k - l ,  where )~ is the p-cyclotomic character. Con- 

struet Dirichlet characters a, /3:  Ga l (Q/Q)  , R x c_ C × as in the beginning 

of Section 3.5 such that  c~ mod p = ~, /3 mod p = ~ for a fixed prime ideal p 

of R lying above p. Let E be the Eisenstein series obtained by normalizing 
n as in equation (62). Then if E = ~,~=o anq , we have TeE = age for e /~N, 

UgE = age for ~]N, and (d)E = e(d)E. For a prime t iN,  set 

Ae = g -  1 if U e m o d m  = ~(f) ,  

Ae = gk _ (~//3)(g) if Ug m o d m  = a(e)e k-1 

By Propositions 3.34-3.37 we have that  

ao(E) = L(1 k,c~-'/3)HellNAe, v, 

where v is a primitive vector in R[1/N][oriented cusps of X, (N)] .  Hence 

m '  = <Te - ae for primes g }(N, Ue - ae for primes gIN; <d> - e(d), go) C 

lies above m C_ T with the prime p dividing L(1 - k, o~-l/3)IXgJJN,~& Hence  m is 

Eisenstein. | 

4. Multiplicity One for Eisenstein ideals 

Let N be a positive integer and denote by T the weight k Hecke algebra for 

F0(N), k > 2. So T is generated over Z by Te, g ~ ;  Ue, t iN .  Suppose m c_ T is 

a maximal  ideal with residue field k = T / m  of finite characteristic p > k prime to 

N. We retain our previous notation that  ¢: E * Yo(N) is the universal elliptic 
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curve, Op = S y m m  k - 2 ( R l ¢ , Z p ) ,  and ~p = ~)p/p~p. We have seen in Theorem 2.1 

tha t  if Pin is irreducible then dimk Hl(Yo(N)-~,~p)[m] = 2. In fact in this case 

Hl(Yo(N)~,~p)[m] is isomorphic to the k[Gal  (Q/Q)]-module  corresponding to 
v Pro' In this chapter  we s tudy  the analogous question when Pm is reducible. If  

P m =  a ® ~ for characters a and ~, then all const i tuents  of the k[Gal (Q/Q)]-  

module HI(Yo(N)~, ~p)[m] are isomorphic to a -1 or/3 -1. More generally this is 

true for the m - p r i m a r y  submodule  H~.r(Yo(N)-~, ~p)(m} of Hlp~,.(Yo(N)-~,-~p). 
We shall examine the case when N is a prime. If P m =  a O/3 then we know tha t  

{a,/7} = {X0 = t r iv ia l ,  Xk-1}, where X is the p-cyclotomic character.  Let us 

assume that a = Xo and ~ = X k-i. 

We first study the possible extensions annihilated by p 

0 i X1 * • i X2 * 0 ,  

where X1, )C2 = a or/3, which satisfy the local requirements necessary to be a 

subquotient  of the new par t  of H~.r(Yo(N)- ~, ~p)V. The local requirements are: 

1. At  a prime ~ ¢ p , N  the extension 0 * X1 " " " X2 , 0 must  be 

unramified. 

2. The  extension 0 " )C1 • • " X2 ~ 0 of Ga l (Qp/Qp) -modu les  is 

crystalline. 

3. By Theorem 3.30, a Frobenius element FN acts on 

{(a - 1)xlx c . ,  o an element of inertia at N}  

(i.e., the smallest submodule  of • such tha t  the quotient  is unramified) 

as --NwN. This shift occurs because subobjects  correspond to quotients 

under  duality. In general therefore if 0 • ~(1 " • " :~2 - 0 ramifies 

at  N,  then 

)o(N) =- - N - l w N  m o d m  and x2(N) - --WN m o d m .  

On the N-new part  WN = --UN since TN = WN -~ UN is a project ion to the 

N-o ld  part .  Hence we can express the above equations in terms of UN as 

xI(N) =- N-1UNmodm and x2(N)  = UN m o d m .  

A key ingredient in our s tudy  of such extensions will be the computa t ion  of 

certain Ext  groups: 
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PROPOSITION 4.1 : Denote by Ext  ' crystalline extensions annihilated by p. Let 

0 ~_ i , j  < p - 2 and let Fp(i)  be the Tate twist corresponding to )~i. 

1. Over Qp, 

Ext  ~p(]Fv(i) ,Fp(j))=0 i f i - j  > 0 

Ext~p(]Fp(i),Fp(j))~-Fp if i - j < O. 

2. Over  Q~ nr, 

Ext  ~p (Fp( i ) ,Fv ( j ) )=0  f f i - j  > 0 

Ext~p(Fp(i) ,Fv(j))~F p i f i - j  < O. 

Proof" Let ]Fv{i } be the crystall ine object  corresponding (in a contravar iant  

manner )  to the Ta te  twist  Fp (i). The  underlying module  of Fp {i} is just  Fp, with 

f i l t rat ion given by Fi(Fp{i}) = Fp{i}, F~+I(Fp{i})  = (0), and ~i(1)  = 1. We 

then  have 

! 
Ext  ~p (Fp (i), Fv( j )  ) ~ H o m ( F  v { - j } ,  Fv { - i } ) / ( 1  - ~ ° ) F °  H o m ( F  v { - j } ,  Fp { - i } ) .  

Moreover Hom(Fp{i},Fp{j}) -~ F v { i - j } .  I f M  = Fp{k}, then for k < 0 we have 

F ° M  = 0 while for k > 0 we have F ° ( M )  = M, ~0 = 0. Over  Qpnr the s i tuat ion 

is similar  except  t ha t  1 - ~0 becomes surjective. | 

We proceed to analyze the the various possibilities for 0 " )(1 * * * 

;~2 * 0: 

Case 1. 0 * a * *  * o~ * 0 

There  are no nontr ivial  crystall ine extensions of F v by F v annihi lated by p (cf. 

Propos i t ion  4.1). Equivalent ly  if I C Gal  (Qp/Qv)  denotes the inert ia subgroup 

then such an extension o f / - m o d u l e s  is split. By 3) of the local requi rements  

above we see tha t  if the extension is ramified at  N then  N =- UN m o d  m and 

UN =-- 1 m o d m ,  so N _-- 1 m o d p .  

Case 2. 0 *~ ,* *~ * 0 

Again let I C Gal (Qp/Qv) denote the inertia subgroup. The extension of I- 

modules is split at p since the crystalline Ext~,(Fv(k - I), Fp(k - i)) -- 0 over 

Q~nr. Deduce from 3) of the local requirements that if the extension is ramified 

at N then N k --- UN modm and UN ---- Nk-1 modm, so N - I modp. 

Case 3. 0 , a ,, , ~ , 0 
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As before the extension of /-modules is split at p since the crystalline 

Ext ~p (Fp ( k -  1), Fv) = 0 over Qpnr. We see from (3) above that if the extension is 

ramified at N then UN = N m o d m  and N k-1 --= UN modm,  so  N k-2 =- 1 modp. 

Case 4. 0 * 3 ~ • , a * 0 

u n r  The crystalline Ext~p(Fp, Fp(k - 1)) -~ Fp over Qp . Locally at N we see 

from 3) above that if the extension is ramified at N then N k = UN = 1 rood m, 

so  N k ~ 1 modp. 

The global implications of these local results are as follows: 

PROPOSITION 4.2: For X1, X~ E {a,  ~3}, denote by Ext (X1, X2) the group of  

extensions o f  )~2 by ~1 satisfying the local requirements above. 

Let  C denote  the class group o f  Q((v) and set A = C / p C .  For a character ¢ 

of Gal (Q({p)/Q), A • is the subgroup of  A on which Gal (Q((p)/Q) acts via ¢.  

All such characters ~ are powers of  the TeichmiJller character w. 

(1) If  N ~ i modp, then Ext (a, a) = Ext (fl, fl) = 0. 

(2) dimw~(Ext (fl, a)) <__ 1 + ordp IA¢I, where Ib = wk-1, with equality only i f  

N = UN m o d m  and N k-2 - 1 modp. 

(3) I f  UN ~ 1 mod m, then 

dimFp (Ex'-'-t (a, fl)) < 1 + ord IA~I, where ~b = w 1-k. 
p 

Proof." There is a natural equivalence of data between extensions 

E: 0 * X i , * * X j * 0 

of Gal (Q/Q)-modules annihilated by p and Gal(Q(~p)/Q)-equivariant homo- 

morphisms 

p = p(E): Gal (Q/Q(¢p)) ,~ Hom(Fp( j ) ,Fp ( i ) )  '~ Fv(i - j ) .  

The splitting field over Q(~p) of an extension E is the extension Q(~p)(p(E)) 

cut out by p(E) .  We first consider extensions E in Ext (a, a) and Ext (/3, 13). 

If N ~ 1 modp, then by Case 1 and Case 2 the extension Q(~p)(p(E))  is an 

everywhere unramified extension of Q(¢p) on which Gal (Q((p)/Q) acts trivially. 

But the only such are trivial since the ideal class group of Q is trivial, proving 

(1). 

Now consider extensions E in Ext(~3, a)). By Case 3, the extension 

Q(~v ) (p (E) ) /Q( (p )  is unramified outside N and ramified at N only if N -- 
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l modp and UN -- l modm.  The possible E unramified at N correspond to 

A ~1-~ by classfield theory. Allowing ramification above N adds at most 1 more 

dimension since the tame inertia group is cyclic, thereby proving (2). 

Lastly consider extensions E in Ext (a, /3)). By Case 4, such extensions are 

unramified outside pN. Moreover if N k-2 ~ 1 modp or UN ~ 1 m o d m ,  then the 

extension E is unramified at N. In this case, restriction to the intertia group 

gives a map 

Ext (a,/3)) * Ext ~,(Fp,Fp(k - 1)) ~ ]Fp, 

with Ext I denoting the crystalline extensions over Q~nr annihilated by p as in 

Proposition 4.1. The kernel of this map is the everywhere unramified extensions, 

i.e., A ~°~-1. This then proves (3). II 

As in Proposition 4.2 above, let C denote the class group of Q(@), A = C/C p, 

and A ¢ denote the subgroup of A on which Gal (Q(ffp)/Q) acts via the character 

¢. Any such ~p is a power of the Teichmiiller character a;. The theorem of 

Herbrand-Ribet  says that for ~p = w i with i odd, 2 < i _< p - 3, A w = 0 if 

and only if p d L ( 0 , ¢ - l ) .  Hence the following proposition then follows from 

Proposition 4.2. 

PROPOSITION 4.3: Let p > k be coprime to the prime number N. Sup- 

p o s e N  ~ l m o d p  and UN ~ l m o d m .  Moreover i f2  < k < p -  1, suppose 

p }(L(O, wk-1)L(O, wP-k). Then 

Ext (a, (~) = Ext (~,/3) = 0 and dim~,(Ext (/3, (~)) _< 1, dim~,(Ext (a, /3)) ~ 1. 

Next suppose 

Ext (a, (~) = Ext (f~,/3) -- 0 and dimF~ Ext (~, a))  < 1, d im~ Ext (c~,/3) _< 1. 

Set Ml = a and Nx = /3. Inductively suppose that a k[Gal (Q/Q)]-module 

Nn-1 has been constructed , n _> 2, satisfying the necessary local requirements 

1,2,3 above to be a subquotient of H~r(Yo(N)~, ~p)V. Then define M,~ to be a 

nontrivial extension 

0 * ~  - M n  " N n - 1  - 0  

if such an extension exists. Similarly suppose inductively that a k[Gal (Q/Q)]- 

module M,~-I has been constructed , n _> 2, satisfying the local requirements 
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above. Define Nn to be a nontrivial extension (if one exists) 

0 ~ 3  ~ N n  . M n - 1  . 0 .  

In this way we construct a family of modules {M/, Nj } which possibly terminates 

at some point. Obviously if Mt does not exist for some t then Nj will not exist 

for j > t + 1. Hence the index where the Mi terminate and the index where the 

Nj terminate will differ by at most 1. We claim that these modules {M~, Nj } 

are canonically defined and up to isomorphism independent of all choices. This 

will follow from the following computation. 

PROPOSITION 4.4: The statements below are taken to be vacuous i fa  particular 

Ni or Mj does not exist. 

(1) d im~ Ext (Am, a) < 1, diin~- Ext (Mn, 3) _< 1. 

(2) Ext (N~,/3) = 0, Ext (M~, cu) = 0. 

Proof: The long exact sequence arising fl'om 0 " 3 , N~ . Mn-1 , 0 

yields 

0 , Horn(3, 3) - Ext (M~_I, 3) * Ext (Am, 3) , Ext (3, 3) = 0. 

As Horn(3, 3) ~ Fp, we conclude that  

(63) dimy, Ext (M,~-I, 3) = d im~ Ext (Am, 3) + 1. 

On the other hand the short exact sequence 0 * a * Mn 

yields 

0 * Ext (Nn-1, 3) , Ext (M~, 3) 

* Nn-1  

, Ext (a, 3) ~ Fp. 

Hence 

(64) dimFp Ext (Mn, 3) _< dim~p Ext (N,-1,  3) + 1. 

From equations (63), (64), and the hypotheses that 

Ext (N1, 3) = 0 and dim~p Ext (M1, 3) < 1 

we deduce that 

dim~- Ext (Mn, 3) _< 1 and Ext (Nn, 3) = 0 for all n. 

The remaining pair of statements, viz. 

dim~ Ext (N,~, a) _< 1 and Ext (Mn, a) = 0 for all n, 

~0 
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are proved in an ana logous  manner .  | 

The  cons t ruc ted  M,~ and N.,~ are indecomposab le  p- tors ion  Gal  ( Q / Q ) - m o d u l e s  

wi th  J o r d a n  HSlder  series which may  be i l lus t ra ted  as: 

c~ and ,J , respectively.  
/3 rt 
a f~ 

We now cla im tha t  these are all such indecomposables .  

PROPOSITION 4.5: Suppose M is a ~nite p-torsion Gal  (Q/Q)-module all of 

whose constituents are  isomorphic to c~ or 9. Then if M satisfies 1), 2), and  3) 

M ~ (~M~)~t~ (~4V5). 

Proof: We argue by induc t ion  on the  length  of M.  The  s t a t emen t  is c lear ly  t rue  

for M of length  1 then  we must  have / t4  ~ c~ = M1 or M - / 3  = N1 Assume  the 

s t a t emen t  is t rue  for length  'n - 1. Such an M of length  n mus t  have a submodu le  

i somorphic  to (~ or ~. We suppose  we have 0 , a , M * M ~ ~ 0, the  

case of M conta in ing  ~ be ing  analogous.  If M is decomposab le ,  then we are  

done by induct ion.  Hence suppose  M is indecomposable .  By (2) of P ropos i t i on  

4.4 we must  have then  M ~ ~ ~)~=1 Nj(~), which we assume ordered  so t ha t  

Nj(1) C_ Nj(2) C . . .  C_ Nj(~). If  r = 1 then again  we are  done since then 
rxa  r M = Mj(1)+I. So we suppose  r > 1. The  class c = (c~)~= 1 of the  extens ion 

0 * c~ , M * M '  , 0 in E x t ( M '  = ONj(s),(~) ~= @Ext(Nj(s),C~) 

satisfies c~ ~ 0, 1 < j < r as M is indeeomposable .  For A E F x consider  the  m a p  

r 

= (1 ,  0 . . . .  , 0 ) :  Nj( ) 0 
s : l  

Since d i m ( E x t  (Nj(1), a ) )  < 1 it is poss ible  to choose )~ so t ha t  i*~(c) = 0. But  then  

Nj(1) can be spl i t  off of M.  This  con t rad ic t ion  then  es tabl ishes  the  propos i t ion .  

| 

W i t h  these p r epa ra t i ons  we now tu rn  our a t t en t ion  to the  mul t ip l i c i ty  ques- 
1 r t ion. Let  V :=  H p ~ r ( } o ( N ) ~ , ~ p ) ( m }  v denote  the  m - p r i m a r y  componen t  of 

Hlar(Yo(N)~, ~p)V. Now V is a "~'[Gal (Q/Q)]-  modu le  all of whose cons t i tuen t s  

are a or ft. Hence by P ropos i t i on  4.5 V TM (~)M~) (9 (ONj).  Note  t ha t  the  

last  two s teps  in any J o r d a n - H S l d e r  f i l t ra t ion  of V are  ann ih i l a t ed  by  m by the 
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Eichler-Shimura relations. By Theorem 1.1 we know Multiplicity One for a in 

V[m] or for /3 E V / m V .  Hence the decomposition of V into a direct sum of 

indecomposables must be of the form 

(65) v _-__ A • (e /3 '~) ,  

where A ~ M,~ or A = Nn. Therefore the dual HomF,(V, Fp(k - 1)) of V is 

A* @ (®a 's ) .  Now H~(Yo(N)~,-Op)  is self-dual since Poincar~ Duality gives a 

perfect pairing 

The Hecke algebra is self-adjoint with respect to this pairing. Moreover Tp = 

T ® Zp is a complete semi-local ring and hence Tm is a direct factor: Tp = 

Tm × T~m . As the action of T is self-adjoint with respect to the auto-duality of 

H~r(Yo(N)~,-~B) it follows that  V is self-dual. 

Taking the dual reverses the steps in a Jordan-H51der filtration, inter- 

changing c~'s and/3 's  as it goes. For example the dual of /3 is 
(~ 

/3 /3 /3 

a and the dual of is 
/3 /3 /3 

In general, the dual of M2n is M2n and the dual of M2n-1 is N2n-1. Similarly 

the dual of N2~ is N2n and the dual of N2n-1 is M2n-1. Hence if V ~- A®(@/3's) 

with A - M~ or A ~ N~ and V is self-dual, then we must have V ~ a •/3, 

V ~ = M2n, or V ="~ N2n. 

PROPOSITION 4.6: The Galois module V[m] = Hl~r(Yo(N)-~,-Op)V[m] has a = 

Xo as a submodule. 

Proof: We have the diagram of Gal (Q/Q)-representations 

H~r(Yo(N)-~, Op) C_ HI(Yo(N)~, Op) , ~ Zp(1 - k) 
oriented cusps 

which under the ~tale/crystalline correspondence gives an F k - L p a r t  

Sk C Mk ao _ ~ Zp[oriented cusps]. 
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Let I = I (E)  C_ % be the ideal defined by an Eisenstein series E of weight k 

for F0(N). Then the kernel of I on Mk is Zp - E. This means that  E m o d a 0  

defines a class (E) in parabolic cohomology; (E) C Sk/aoSk = F k-1. Using the 

correspondence between Galois and crystalline upon reducing to Q~.r we have the 

injection Fp{k 1} ~-~ 1 - Hcry s corresponds to Fp(1 - k) ~ Hit.  This injection is 

an injection of Gal (Q/Q)-modules (and not just Gal (Qv/Qp)-modules!) because 

the kernel of the Eisenstein ideal is a Gal(Q/Q)-module .  In turn we obtain a 

surjection of Gal (Q/Q)-modules H~t - - ~  Fp. | 

Since V[m] has a as a submodule this means V ~ M2n or V ~ a •/3. If 

V ~ M2n, then Vim] must consist of the first two steps of the filtration for any 

more would result in at least two a's. Hence in any case we get an exact sequence 

0 , a , Vim] , /~ , 0 

and dimk H~(Yo(N)~ ,Op)[m]  -- 2. Accumulating all the hypotheses used we 

have then the Multiplicity One result below: 

THEOREM 4.7: Let N be a prime and T the weight k Hecke algebra for F0(N). 

Suppose m c_ T is a new maximal ideal of residue characteristic p > max(3, k) 

with pin reducible. Suppose that N ~ l m o d p ,  UN ~ l m o d m .  Moreover if 

2 < k < p -  1, suppose p XL(O, wk-lwP-~).  Then 

d im~  H~r(Yo( N)~,  Ov)[m] = d im~ H~par(YO( N)~,-O;)/mH~p~r(YO(N)Q , -0;) = 2. 

Under these hypotheses the ring ~m is Gorenstein. 

5. Companion forms 

We begin by recalling some results of Section 2; this will also serve to review 

our earlier notation. For a positive integer N denote by ¢: E , Y I (N)  the 

universal elliptic curve. Set 0v = S y m m k - 2 ( R l ¢ , Z p )  and ~p = Op/pOp. Let 

'IF be the weight k Hecke algebra for F I (N) .  Suppose m C T is a maximal  

ideal with residue field k = k[m] of characteristic p, (p, N)  = 1. By the duality 

between the Hecke algebra and cusp forms, m corresponds to a normalized cusp 

form f = ~-~--1 anq n of weight k for F I ( N )  with coefficients in the finite field k. 

We assume that  the representation Pm: Gal (Q/Q) * GL(2, k) is irreducible. 

Then by the Multiplicity One Theorem (Theorem 2.1), if p > k then V = Vm = 

Hlar(Yl(g)-~, 0p)V[m] is isomorphic to the k[Gal (Q/Q)]-module determined by 
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Pro. Moreover the Gal(Qp/Qp)-representation v is crystalline. The F-crystal  

M = Mr,  corresponding to the dual of V has a canonical filtration 

(66) Mm = M = F ° D F k-1 D 0 

with F k-1 ~ Sk(Ft(N))[m] = H°(Xo, w®k(-eusps))[m] and 

F ° / F  k-1 -~ Sk(r l (N))*[m] = H°(Xo,  w®k(-cusps))[m] = H 1 (Xo, w®2-k)[m] 

by Serre Duality. There are maps ~k- l :  Fk-1 , M and ~o: FO/Fk-1 , M.  

By definition the maximal ideal m in the Hecke algebra ~ is ordinary if Tr ~p0 ¢ 0, 

i.e. if and only if ~°(F°)  ~Z F k-1. In this case there is an exact sequence 

(67) 0 * (~°(F°))  -~ k{0} , Mm * M / ( ~ ° ( F ° ) )  ~- k{k - 1} - 0. 

Hence if m is ordinary there is an exact sequence of Gal (Qv/Qp)-modules 

(68) 0 , aX k-1 , V , fl , 0, 

where X is the p-cyclotomic character and a, fl are unramified. Furthermore we 

see that  the exact sequence (67) is split if and only if ~ k - l ( F k - 1 )  C_ F k-1. For 

in this case F k-1 is the complement. Of course note that the sequence (68) is 

split if and only if the Gal (Qp/Qp)-module V is tamely ramified. Hence we have 

the following criterion: 

LEMMA 5.1: Pm is tamely ramified at p i f  and only i f  ~ k - l ( f )  E F k-1. 

The criterion for pm to be tamely ramified at p provided by Lemma 5.1 is vir- 

tually tautological. However Serre conjectured ([16]) that whether Pm is tamely 

ramified is detected by the existence of "companion forms" to f .  This conjecture 

was recently proven by Gross ([9]). Serre's criterion is as follows: 

THEOREM 5.2: (Gross) Suppose p > max(3, k) and ap ¢ O. Then Pm is tamely 

ramified at p if  and only if  there is a normalized eigenform g = ~ bnq n of weight 

k' = p + 1 - k for r~(N) over k such that nkbn = nan for all n > 1. 

The pair of forms (f, g) as in the above theorem are called companion forms. 

This relationship is equivalently expressed as pf ® X = Pg N ;~k. 

Gross's proof reduces the question concerning forms modp  of weight k on 

r~(N) to forms of weight 2 on FI(Np).  As a further illustration of crystalline 

techniques applied to forms of higher weight we give in this section a direct proof 
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of Theorem 5.2. In many ways it is simpler to work with good reduction and 

higher weight rather  than bad reduction and weight 2. We do however note that  

2 ~ c(p) whereas crystalline Gross's proof also yields the case p = k provided ap 

methods do not directly apply here. The techniques of Abrashkin [1] might help 

however for a crystalline t reatment  of this limiting case. 

One direction of Theorem 5.2 is easy. Suppose a companion form g to f exists. 

Then by definition there is a form g of weight k' = p + 1 - k on F I ( N )  such that  

P / =  P9 ® xk -1 .  Then as in (68) there are exact sequences 

(69) 0 . OeX k-1 ~ Vf . ~ . 0 

(70) 0 * O/~ k ' - I  '~ gg ,, /~' ,, 0 

Twisting the latter sequence (70) by )~k-1 gives 

(71) 0 , a '  , Vg ® X k-1 = Vf 

a,  /3 unramified, 

a',  /3' unramified. 

, /3 'X k-1 , 0. 

Since p > k >_ 2 ~'  ¢ ~X k-1 . Hence c~ =/3 ' ,  /3 = c~', and VI = c~X k-1 ®/3. 

The other direction of Theorem 5.2 is the substantial implication. In light of 

Lemma 5.1, this is the assertion that  if ~ k - l ( f )  C F k-1 then a companion form 

to f exists. We shall compute ~ k - l ( f ) m o d  F k-1. Let X = X I ( N ) ,  (p, N)  = 1. 

On the formal completion )~rord there is a Frobenius lift ~ord induced by taking 

an elliptic curve E to E modulo its #p-subgroup. This ~o~d operates on gtx, w, 

~p, etc. respecting filtration. On w, ffpord/p: wp * w is given by 1/ep_l where 

ep -1  is the normalized Eisenstein series of weight p - 1 taken modulo p. 

Let E C X denote the supersingular locus. For x E E, ep-1 has a simple 

zero at x, so u = dep_l (x )  E w p-1 ~ ~ x ( X )  = 02P-I-I(x) makes sense. Such a 

u also admits an alternate description. Let E be a supersingular elliptic curve 

over a perfect field of characteristic p. Then Frobp acting on H~rys(E ) induces 

an isomorphism H i ( E ,  OE) p ~ w -p ~-* F(E,  ~E)  = w. This isomorphism is 

multiplication by u, at least up to a factor independent of E. Let • be a local 

Frobenius lift near a supersingular point. The assertion follows from the relation 

in characteristic p, V o ~* = d¢* o V = 0. 

For applying this to a class z in H~)R(E ) which locally generates H i ( E ,  OE): 

• *z = e p - l "  z + w(z), for w e F (E ,  ~ ) ,  

and hence V~*z  = dep-1 • z + Vw(z). Calculating modulo F(E,  ~tl),  we have 

Vw(z) = (Kodaira-Spencer)  × w, and hence w(z)  =- - d e p _ l ( z )  using Kodai ra -  

Spencer. 
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For a more precise notation let ~ be a Frobenius lift near E on P(. Then 

(~I)ss - -  ( ] ~ ° r d ) ( z )  = p(Oz) modp 2, 

where 0 is a Frobenius-linear derivation on an open subset contained in the 

ordinary locus of X0 = X × Fp. We want to determine its poles along E. If x E E 

and z is a local coordinate near x then (dz) is regular at x. But 
P 

(dz)  p _ (dz)  p dz  
(Oo~d). (dz) = 2 - u2z2dzp-1  - u2z  ~ + (lower order terms) modp; 

P ep-1 

here u is the leading term of ep-1.  We shall see that o°~d(z)modp 2 has at 

dz mod(p, regular) and therefore most simple poles, so it follows that d(Oz) =_ ~2z2 

Oz = __1 + (regular) U2Z 
We now check that 0 has at most simple poles, i.e., that  ~p°rd(z) modp  2 has at 

most a simple pole. For this let w be a local coordinate at Frob(x). Then locally 

Xo(p)  C X × X is defined by an equation g(z ,  w)  with 

g(z ,  w)  = (z p - w ) ( z  - w p) modp. 

Let prl ,  Pr2: X × X , X denote projection onto the first and second fac- 

tors, respectively. The tip-type subgroup defines a rational section of pr 1 and 

oord is given by composing with the second projection. In other words in local 

coordinates we have g(z ,  ~°rd(z)) = 0 and ~°rd(z) = z p modp, so 

g(z ,  o°~d(z)) = (o°~d(z) -- zP)(z  -- o°~d(z) p) + (terms regular in z) modp  2. 

Therefore ~°~d(z) -- zp (z  -- z p2) is regular modp. 
P 

Finally we consider f E F ( X o ,  w k) ~- F(Xo,w k-2 ® gtl(cx~)). Recall that 

$ = Rl~r.,crys(O). The element f defines a class in H~ys(Yo, Symmk-2($)) ,  

which is in F k-1. We want to compute ~ k - l ( f ) m o d F 1 ,  which is in 

HI(Xo,  w2-k). It suffices by Serre Duality to compute the product (~k - l ( f ) ,  j3) 

for ~ E F(Xo, w k-2 ® ~),  i.e., ~ a cusp form. We need explicit computations in 

the de Rham complex Symmk-2($)  v Symmk-2(C)® ~1(0c) in order to give 

a represention of ~ k - l ( f ) .  Firstly note the formulas for a function h: 

o~ On h . . t ~ 
(72) h ( z  + t) - h ( z )  = ~ -SUz, (Z)-~., 
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oo on_lh tn" 
(73) h(z + t ) < z  + t) - = 6 (  Ozn-1 

which it suffices to check for h(z) = z "~. The same formulas hold for sections of a 

bundle with integrable connection, replacing O/Oz by V(O/Oz). Let us consider 

this in some generality. 

Suppose V is 7/,p o r  an unramified extension, C = U1 U U2 is an open affine 

cover, and E is a Frobenius-crystal  on C. This means that  there is a connec- 
1 tion V: E , E ® ~ c / v ,  which is integrable as the dimension is 1. Also, if 

(I)i is a Frobenius-lift on the formal scheme ()i 0=1,2) ,  then we have (I)i-linear 

~i: EIUi ) EI/J~ which is parallel. Set U1,2 = U1 n U2 and let D be the divided 

power hull for U1,2 ~ U1 x v U2. We can define crystalline cohomology either by 

the total  complex associated to 

• ) Q U~,2 

or by the to ta l  complex associated to 

( ) (  ) (75) E(U1) ® g/b1 ® E(()2) ® gt* • E(D(U1 Xv U2)) ® ~" Us U1 x v U2 ' 

The complex (75) maps to the complex (74). The  first complex (74) is smaller, 

while the second (75) has Frobenius action (~1, ~2, ~a Xv ~2). If a E 

F(C, E ® t21) is a 1-form, we get a 1-eocycle in the first complex (74) with 

components  (aiD1, alUm_, 0), the 0 being in the (1 ,2)-component .  Let  z be a 

local coordinate  on U1,2, zi = pr*(z) which is then a function on U1 Xv U2, and 

O: = O/Oz. Lift to a 1-cocycle in the second complex (75) as follows: 

( oo . [Z--Z ~n2~).TTl ) 
(76) c~l[fl , (~IU2, Epr~(V(Oz)n,(Oz)(X) ~ i n  ~ , n~O 
where the interior mult ipl icat ion (i.e., contraction) i(O~)a is sometimes also 

denoted (Oz, a). This is closed since 

(77) pr~(a)  - pr~(a)  = V p r ~ ( V ( O z ) n - l i ( O = ) o ~ ) - ~ [  

on D(UI x v U2). Now apply Probenius to all components  to deduce tha t  Frob* (a)  

is given by the 1-cocycle: 

(fll(O~lU1) , *  ^ . ^ ' ~ ' " p r ~ ( V ( o z ) n i ( O z ) O l )  ( O l ( Z 1 )  - -  ~)2(Z2)) n+l  (7s) 
o=o  
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If we map to the first complex and divide by FI(H~a(E)) = I m  (F(C, E ® ftl)) ,  

i.e., map to Hi(C, E) (usual cohomology), only the third component survives 

and gives a Cech 1-cocycle. 

Now in our case a is a section f of w °k = w ®k-2 ® ~1  C Symm k-2(E) ® ~1. 

From equation (77) we get 

(79) ~ ( f )  - ~ ; ( f )  = V ~2(V(Oz) - i(Oz)f) z n( " 

We need in fact Frob*/p  k-1. Note that Frob* on V(oz)n-lf  is only 

divisible by pk-2-(n-1) __ pk-n-1 if n _< k - 1, respectively p0 if n _ k - 1. 

But (~ol(z) - ~a(z)) n is divisible by p'~, and for n! we need a p only if n >_ p, etc. 

So the n th  term in ~ - ~ has p-exponent pk-1 

(80) - (k - 1) + m a x ( k -  n -  1, 0) + n -  . 
v = l  

For n _< k -  l this is 0. F o r n > k - l t h i s i s  

> n + l - k -  - - .  
u=l p - 1  

k As k < p, the minimum is obtained at n = k where we obtain 1 p---7 > 0. 

Hence these terms are all congruent to 0 modp. Finally ~ respects filtration, 

so mot iF  1 only the term V(Oz)k-2i(Oz)f survives. Also modulo F 1 this is (up 

to a factor) given by multiplication using the Kodaira-Spencer class--see the 

beginning of Section 1. 

Now the product (~k - l ( f ) ,  3) is equal to the sum of the residues at E, after 

multiplication with 3; see [8]. By the black magic of crystalline cohomology (cf. 

equation (76)) we have have to pair the term inside V( ) with /3 and compute 

residues. We only need its value modulo F 1. Hence finally 

(81) ( : k - , ( f ) ,  Z) = E fPZ(x)' 
U k 

x E E  

where again u is the leading term of ep_l. 

Now ~ k - l ( f )  C F 1 if and only if (~k - l ( f ) ,  Z) = 0 for all cusp forms ~. By 

Equation 81 this occurs exactly when 

E R e s , (  k_fT~ ~ ) = 0  f o r a l l 3 .  
xEE Zt - ep_  1 
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But using the Residue Theorem and Serre Duality this happens if and only if there 

exists 7 C Fm~o(X0, co 2-k) such that 7 has a simple pole at x C E with residue 

equal to that of fP / t t k - l ep_  1 and no other singularity. Multiplying by ep-1 we 

see that this is equivalent to the claim that there exists g E F(X0, CO p+I-k) which 

at E has the same values as f P / u  k - l .  The values of g on E uniquely determine 

it; otherwise for two such their difference would be divisible by the Eisenstein 

series and so have negative degree. The Heeke eigenvalues of g for Te, ~ :/ p, 

are uniquely determined. Namely if f has eigenvalues ae, ~ ¢ p then a priori 

by Hecke equivariance g has eigenvalues a[/# k-1. This also holds for T u by the 

crystalline theory. Thus pg is determined. If we let ~r denote Frobenius, then in 

fact pg = Pf 'o \ -~ -~ )"  This shows that pg is irreducible and therefore 9 is a cusp 

form. So twisting by the inverse of Frobenius g deternlines a companion form to 

f ,  concluding the proof. 
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