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Introduction

In this paper we apply recent advances in crystalline cohomology to the classical
case of elliptic modular forms. The main tool is Faltings’s Comparison Theorem
for p-adic étale and crystalline cohomology in the case of open varieties with
smooth normal crossings compactifications ([7, Theorem 5.3]). This result is
applied to open elliptic modular curves, the context of Faltings’s earlier work [8].
Our aim is to study the modular Galois representations attached to automorphic
forms mod p of weight & > 2. The restrictions on the results obtained are dictated
by the restrictions in the crystalline theory. It is helpful to make these explicit
at the outset:
I. The Comparison Theorem is only established in the case of good reduction,
so we shall always require that p not divide the level. Otherwise for £ > 2
the theory either does not exist or it is not as useful.

I1. With no restrictions on the weight k there is a Q,-theory. However in this
paper we are exclusively interested in modular representations of Gal (Q/Q)
arising from automorphic forms and hence require a Z,-theory. For this one
must impose the condition k < p. At the limiting case k = p some remnants
of the theory should remain, see [1].

We begin with the foundations. Fix a level IV and a weight £ > 2. Denote
by Sx(T1(N) the space of cusp forms of weight k for I'1 (V) and by T the Hecke
algebra acting on this space. We first show that for a maximal ideal m C T
of residue characteristic p > & with (p, N) = 1 the modular Galois representa-
tion pm: Gal(Q/Q) — GL(2,F,) is crystalline with the weights 0 and (k — 1)
each occurring with multiplicity one. We furthermore show that in this case the
Comparison Theorem between p-adic étale and crystalline cohomology is Hecke-
equivariant. The equivariance follows easily from functorial properties except in
the case of T}, so it is here that all our efforts are concentrated.

The first application of these foundations is the essentially immediate result
of Multiplicity One for maximal ideals m C T of residue characteristic p > k,
p AN, such that the associated modular Galois representation pm, is irreducible
(Theorem 2.1). In case p is reducible crystalline methods show only that
pm = ax* 1 @ 8 with o, 8 characters of Gal(Q/Q) unramified outside N and
x the p-cyclotomic character. We next classify these reducible representations
pm occurring in cusp forms of type (N, k). Suppose m C T with py, reducible

is a new maximal ideal in the sense that p,, does not occur in cusp forms of
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any level properly dividing N. Then if p > k£ + 1 we prove that m arises from
an Eisenstein series of type (N, k), cf. Theorem 3.38. To prove these results,
we first use geometric methods to construct Eisenstein series E(a, 3) attached
to two Dirichlet characters a and 3. For a reducible p, the Eichler-Shimura
relations give the same Ty-eigenvalues as an Eisenstien series F{a, 3) and the
crystalline theory shows that the T,-eigenvalue is the same as that of E(a, §).
So we have to analyze the possible Up-eigenvalues for £{N. This study of bad
reduction occupies much of Section 3 and relies on both the Picard-Lefschetz
theory for semi-stable reduction and the work of Katz—Mazur.

Having classified m with p,, reducible we turn our attention to Multiplic-
ity One in the Eisenstein case in Section 4. We show in a special case that
Multiplicity One holds in the Eisenstein case for higher weight k. The case we
can treat is of prime level and is the analogous case in higher weight to that
considered by Mazur [14] in the case of weight 2. It should be pointed out that
Multiplicity One in the Eisenstein case may well be false in general; cf. the
theorem of Kurihara [12].

Lastly we reconsider the theorem of Gross [9] on the existence of companion
forms. Gross proved this theorem by reducing to weight 2 and there studying
bad reduction. We work in weight k£ in a case of good reduction by crystalline
methods. This proof is unlike those of the other results in the paper. Whereas
our other applications require only the general results on the crystalline cohomol-
ogy of modular curves found in Section 1, here one really has to compute with
Frobenius in crystalline cohomology. We know of no other similar applications
of crystalline methods to Shimura varieties. But the topic is certainly in the air.
Coleman and Voloch 3] have another new proof of Gross’s Theorem which like
ours does not use Multiplicity One. Moreover their techniques yield results in
the case p = k whereas our crystalline methods do not.

1. Hecke operators in crystalline cohomology

To set notation, fix a level N > 3 and denote by I'(N) C SL(2,Z) the subgroup
of matrices which are congruent to the identity modulo N. The open modular
curve Y(N) corresponding to I'(N) classifies elliptic curves with full level N-
structure. There is then a universal elliptic curve m: E — Y = Y(N). By
adding finitely many cusps to Y(IN) we obtain a complete curve X(N). The
universal elliptic curve E extends to a semi-abelian variety over X(N), giving
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rise to the semi-stable compactification 7: E — X = X(N). Everything is
defined over Z[1/N,e?"*/N] or over the extension L of Q, generated by the Nth
roots of unity.

Fix a prime p, (p, N) = 1, and work over the field L. Set V = Rlm, ¢(Z;).
Then V is an étale sheaf on Y ® L. View the structure sheaf O as a crystalline
sheaf on E and set £ = Rl7. crys(O). Then in the terminology of [7] we have
S M.’F[VO,I](Y). As T is logarithmically smooth, the crystalline sheaf £ is
associated to the étale sheaf V by (7, Theorem 6.2]. Hence, functorially for an
integer k£ > 2, Symm*~%(€) € .M]-'[Y),k_m(Y) is associated to Symm*~2(V).
From [7, Theorem 5.3] it then follows that for p > k HZ.(Y,Symm*~2(£)) is
the F-crystal corresponding to the dual of H} (Y, Symm*~2(V)). A similar
statement holds for H! and H], = Image(H! — H").

The crystal HY, (Y, Symm *=2(€)) has weights 0 and (k —1) by the arguments
of [8]. Namely we show that in the de Rham complex

Symm *~2(£) — Symm *~2(£) ® Q'{cusps)

the associated graded pieces grt. are acyclic for 0 < i < k—1. Let w be the bundle
of differentials on the universal elliptic curve, so w = W*QIE X The connection
on £ induces an Ox-linear map

gr(€) = w — gre(€) ® Q! (cusps) = w®~! @ Q' (cusps).

This map is given by the Kodaira-Spencer class x: w®? —=» Q!(cusps) and is
thus itself an isomorphism. This is the assertion for k¥ = 3; other k then follow
similarly by linear algebra. Note that there is no problem with factorials n!’s etc.
as long as k — 2 < p. Also

F*=1 o M(T(N)) = (X, w2*? @ 1 (cusps)),
where M(I'(N)) denotes modular forms for I'(N) of weight k. Furthermore
FO/F*1 = §y(T(N))* = H(X,wR*™)

with S, (I'(N)) = I'(X, wg(k_z) ®Q1) denoting the space of cusp forms of weight k
for '(N). Again similar statements hold for H! and H!, = Image(H}! — H?).

par

Of course for the filtration on HL, (Yf, Symm*~2(€)) one has F¥~! = §,(T(N)).

Various dualities are respected.
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Suppose I' C SL(2,Z) is a congruence subgroup with I' O T'(N). The open
Riemann surface Y(T') is the quotient H/T' of the Poincaré upper half plane
H. Correspondingly X(I') = H/T U {cusps}. The moduli space Y(I') and its
compactification X (T') can be defined over a number field contained in Q(e2"¢/V).
Frequently the most natural model for X (I') will be over Q(e2"/V). Our primary
example will be

[=Ty(N)= {( ‘z Z ) €SL(2,Z)|c=0modN, a=d = lmodN}.
In this case X(T') = X;1(N) and Y(T') = Y;(N) can be defined over Q. However
a better model is the one over Q(e?"/V) associated to the “balanced” I'j(NV)
moduli problem. In general let K be the completion of a field of definition of
X(T) at a prime above p. The p-adic sheaf Symm*~2(V) on Y (N) has a natural
T/T(N) action. A general foundational comment is required here. We want
to view Y(T') as the quotient Y(N)/(I'/T(N)). Unfortunately, if T'/T(N) has
fixed points on Y (V) it is necessary to use either stacks or an auxiliary level M
structure in order to do this. We will write proofs throughout for the case that
I’ has no elliptic elements, omitting the routine modifications in case there are
fixed points. The only technicality is that we will want to use Poincaré or Serre
duality at various places. For this we need p prime to the order of the stabilizers
of any fixed points. This can be accomplished, for example, either by assuming
p > 5 or working with I';(N) for N > 3.
We obtain a sheaf on the quotient Y(I') = Y(N)/ (I'/T(N)) and if k > 2

H}(Y(D)g, Symm *~2(V)) = H'(Y(N ), Symm *=2(V)) /1),

Hence we can pass from results established for X = X(N) and Y = Y(N) to
results for congruence subgroups X (I') and Y(I') with T’ D T'(V). We summarize
as follows:

THEOREM 1.1: Suppose N > 3 and I' D I'(N) is a congruence subgroup.
The moduli curves Y(T') and X (T') are defined over a number field contained in
Q(e?™*/N} ; let K denote the completion of this number field at a prime above
p fN. Suppose k > p. Then the Gal (K /K)-representation

V = H, (Y(T)%, Symm*~3(V))

par

is crystalline. The F-crystal corresponding to the dual of V has a canonical
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Frobenius filtration
M=F'>Fl50

with F*=1 & §,(T") and F°/F*~1 = §,(T")* .

As we have seen, the crystal HY,, (Y, Symm*~2(£)) corresponds to the dual of

the Gal (L/L)-representation H}, (Y, Symm*~2(V)) for p > k. As usual similar
statements hold for H!' and H],, = Image(H! — H'). We consider the case
Y = Y1(N)/Q and assert that this relation preserves Hecke operators.

The Hecke correspondences here are from X to itself. We now define these
correspondences. Recall that the moduli space X classifies pairs (E,z) where E
is a generalized elliptic curve and z: Z/NZ — E is a point of exact order N. For

a prime 7 the correspondence 7, C X x X is defined by
pro(7; - ((E,2) x X)) = ) (pE, p2),
%]

where ¢ ranges over the (r + 1) isogenies of degree 7 with source E. If the prime
r divides N then the correspondence U, C X x X is defined by

pra(Us - ((E,x) x X)) = Y (0B, gx),

where ¢ ranges over the r isogenies of degree r with source E whose kernels have
trivial intersection with the subgroup generated by z. Additionally there are
automorphisms (a) , (a, N) = 1, of X/Q and w¢ where ( is a primitive N-th root
of unity. The automorphism (a} is defined by

(a): (E,z) — (E,azx).
The automorphism w, is defined by
we(E,x) = (E/(x), 2')

where z’ is the point in E/{x) with the Weil pairing (2, z) = ¢. Finally there is

a correspondence which we shall not need
U, = wU, for a prime r|N.

The definition of U] is independent of the primitive N-th root of unity {. These

Hecke correspondences are all defined over Q, save for w¢ which is defined over

QO
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All of the above Hecke correspondences induce correspondences on the univer-
sal elliptic curve m: E — Y by extending by the universal isogenies. For example
(a) acts on E by multiplication by a. Functorially this gives the action of (a)
on V = Rl7, &(Z,) as multiplication by a. The action of (a) on Symm *~2(V) is
therefore multiplication by a*~2. Similarly all the Hecke correspondences act on
the sheaves Symm *~2(V).

Consider first 7, with ¢ # p. The Hecke correspondence 7; has good reduction

at p:
T, C X xX

X X,
with pr; and pr, denoting the projection onto the first and second factor, respec-
tively. By definition Ty = pr, , o pr3. Hence the T;-equivariance follows from the
known functoriality of the Comparison Theorem. Set V, = V ®z, Q,. It then
also follows that the decomposition

(1) HI(YZ-’ Symmk_z(vp)) = H;ar(va Symmk—2(vp))

® HI}]is(va Symm k_2(VP ))

is preserved. Similarly the Hecke correspondence U, has good reduction at p for
a prime 7|N, r # p. The induced Hecke operator U, preserves the decomposition
(1) and moreover US™Y* is associated to US*.

The Hecke operator T}, is more interesting. There are étale T;t and de Rham
TPR defined on étale, respectively de Rham, cohomology in characteristic 0.
There is also a crystalline T,;7Y°, defined by

T;rys =F,+ (p)F;,

where F, denotes Frobenius and F;, is its adjoint with respect to the inner prod-
uct. The operators T;* and TPR are defined using the correspondence 7, as
before.

THEOREM 1.2: Assumep > k and p [N.
(1) T;7* is associated to Tf*, for a prime € fpN. US™* is associated to Ut for
aprimer|N, r # p.
(2) T = TR, and this is associated to Tt
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Proof: First note that we can reduce immediately to the case of Q,-coefficients
by considering the inclusion of the cohomology with Z,-coefficients. The point
is that the hypotheses p > %k and (p,N) = 1 insure that the Z,-cohomology
HY(Yg, Symm*~%(V)) is torsion-free and hence injects into the Q,-cohomology.
Also assertion (1) is rather trivial and is treated in the comments above.

As for assertion (2), we will first establish the assertion on H],,, dealing with
the Eisenstein part later. With Y = Y{(N), (p, N) = 1 we denote by Z° — Y
the (k — 2)-fold product of the universal elliptic curve E and Z — X the
desingularization (following Deligne [5]) of the corresponding product of Néron
models. Then Z — Z° is a divisor with normal crossings. We have injections
preserving scalar products:

HNYz, Symm*=2V,) — H!k_l(Z%, Q)

| |

Hyo (Yg, Symm *~2V,) —— HEZN(Z2, Q)

par

| |

HY (Y, Symm*~%V,) — Hk‘l(Z%, Q).

There is a similar commutative diagram for crystalline cohomology; the Frobe-
nius automorphisms correspond. Furthermore the Hecke correspondence 7, on
Y x Y induces a correspondence 7,7 on Z° x Z° by extending 7, by the uni-
versal isogeny. Explicitly if ¢ is a p-isogeny the for the pair (E, o(E)) we have
(x1,-..,Zk—2) € E¥~2 mapped to (o(z1),...,9(zk_2)) € @(E)*~2. The Eichler—
Shimura relation provides a description of 7, = 7 mod p. Letting Fp denote the
Frobenius correspondence on Y =Y x F, we have:

(2) Tp=Fp+ (D) F}.

This familiar relation is easily deduced. Observe that if (E,x) € Y is an ordinary
point then

TP'((EaI)XV):(E/“p’f)'}' Z (E/Caf)
CCE]lp] étale

But if (E,z) is an ordinary point then Frob,(E,z) = (E/u,,T). Moreover if
C C Elp] is an étale subgroup then

3) Frob,(E/C,%) = (E/Elp),T) = (E, px).
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So one easily finds that the sum > Ep] étale(E/C, T) of equation (3) represents
{(p)Fi. Also F}oF, =p-{(p). This shows that the Eichler-Shimura relation holds
on the ordinary locus of Y. So equation (2) is valid since the ordinary locus is
dense on Y. Let Z~ denote Z° x F, and correspondingly T; C Z° x Z° denote
the reduction of 7° modulo p. If F; denotes the Frobenius correspondence on
Z°, then exactly as above one sees that

(4) Iy = Fy + (NP

Taking the Zariski closure we obtain a correspondence on Z x Z, which modulo p
is given by the decomposition F, + (p)(F,)", together with possible components
supported at oc.

Now for constant coefficients characteristic classes in étale, de Rham, and crys-
talline cohomology correspond, cf. [7, Theorems 5.6 and 8.1]. So the induced
maps on H!k_l(Z%, Q) and Hk_l(Z%, Q,) correspond as well. Also, if we com-
pose with the map H f‘l — H*=1 components at oo disappear.

Finally, we check using the definition of the pairing in terms of Poincaré Duality
that the closure of (F,)! operates on HJ, (Y, Symm*~%(£)) as F}. In general,
suppose V is a smooth and proper variety over @, of dimension d. The pairing
(,)yon HE (V,Qp) is defined by (a,f) = Try(a U B). Suppose W CV x V is
a correspondence with cohomology class ey € H2% (V x V,Q,). The transpose

correspondence Wt of W has cohomology class cy:. Then we have

<W . a,ﬁ) =Tr V><V(CW U ((l X [3)) = (—l)dTI‘ vxv(th U (ﬁ X a))
=(-DYW* - B,a) = (@, W*- ).

Hence the correspondence W' acts on H(‘frys(V, Q,) as the adjoint of W with
respect to the natural inner product ( , ). Applying these considerations to
H*1(Z,Q,) then verifies the assertion. This then shows that on H}]

par
LR =T = Fpt ()7

Also T;f‘ = T;)R by the de Rham Conjecture [7, Theorem 8.1] as the characteristic
classes of T, correspond. This settles the case for cusp forms.

For the rest we denote by Hj, the “cohomological” cokernel of H — H*, so
that we have the exact sequence

H°—H) —~H'—H'— HL, — H? —~ H* —0.
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In de Rham or crystalline cohomology Hp, is represented by the complex
(Symm *2£ —» Symm *72£ ® Q(cusps)) ® O/ I

supported at the cusps. However, over the ordinary locus (and especially near
the cusps) X° has a canonical Frobenius-lift ® sending E to E modulo its
multiplicative subgroup of order p. Also 7, = ® + (p)®*. This easily implies
that T,PR =T, =F,+ (p)F,f on Hz. Finally from the Hodge-Tate theory we
know that T¢* and TR induce the same endomorphism on grp(Hpg). As Hp,

has pure weight k£ — 1, this implies the assertion. |

We make the following remarks concerning Theorem 1.2:

I. Even if N is not prime to p, the de Rham Conjecture for Z implies that
H'(Yg, Symm*~2V) is a de Rham representation associated to Hpg. Fur-
thermore the T,’s correspond. This is true for H},, and for grp(Hpg),
implying the result for H'(Y7, Symm*~2V).

II. The fact that T2 = TP® can also be seen using grp(Hpg) (as maps in
MF are strict for the filiration). However the Eichler-Shimura relation
TIPR =F,+ FZE is surprisingly difficult to prove. The simplest way seemed
to be the clumsy reduction to Z used above. A more canonical proof
would require a more elaborate theory of correspondences in crystalline

cohomology and their relation to étale cohomology.

2. Modular representations arising from automorphic forms

Fix a level N > 3 and a weight k > 2. For a prime p denote by ¥, the étale sheaf
Symm*~2(V) on Y3 (N)/Q. Define 9, = 9, /p¥,. The curve Y1(N)/Q admits cor-
respondences Ty, ¢ [fN; (d), d € (Z/NZ)*; and U, and Uy, ¢|N, which extend to
correspondences on X1(N)/Q. They induce endomorphisms of H ;ar(Yl (N)g>Up)-
Let To be the Z-algebra of endomorphisms of H}, (Yi{N )5 Up) generated by Tp,
¢} N, and (d), d € (Z/NZ)*. Let T be the Z-algebra of endomorphisms of
Hy, (Yi(N )g» Up) generated by Ty together with Uy for £ |N. The rings T and Ty
are independent of p. Visibly Ty is a subring of the commutative ring T.

Suppose that m C T is a maximal ideal with residue field k = k(m) = T/m
of characteristic p. Write Frob, for a Frobenius element corresponding to the
prime 7 in Gal(Q/Q). Then there is a unique semi-simple representation (up to
isomorphism)

pm: Gal (Q/Q) — GL(2,k)
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such that pn, is unramified for all primes r fpN and for such primes
Tr (pm(Frob,)) = 7. modm and det(pm(Frob,)) = (r)r* ! mod m.

This is essentially due to Deligne. See, for example, [15, Proposition 5.1] or [9.
Proposition 11.1]for detailed proofs. Note that due to the Brauer—Nesbitt Theo-
rem the representation py, is determined up to isomorphism by the characteristic
polynomials of Frobenius for a set of primes r of density 1. Hence if m and m’
are two maximal ideals of T with my = mN Ty = m’' NTy, then py, is isomorphic
to pm’. Hence we may equally well refer to this isomorphism class of represen-
tations of Gal (Q/Q) as pm,, viewing it as being associated to the maximal ideal
mgy C Ty.

As a preliminary to applying the Eichler-Shimura relations to
Hl. .(Y1i(N )Jg ¥p), we must discuss the distinction between arithmetic and ge-
ometric Frobenius. Note that on HZ (Yi(N) x F¢,¥,) we can let Frobenius at
¢ act via Y;(N)/F, or via F,. The action of Frobenius via Y;(N)/F, is the ge-
ometric Frobenius Fgeorm and the action of Frobenius via F, is the arithmetic
Frobenius Fypin. The two are related — Fgeom and Fi,ien Operate as inverses on
H,(Y1(N) x Fg,9,). The Eichler-Shimura relations give that

Ty = Fgeom + () F}

geom

as operators on H(Yi(N)z, 9¥,). Now the action of Gal (Q/Q) on
Hgar(Yl(N)@'ﬂp) is via the second factor, i.e., Frob, = F, acts as arithmetic
Frobenius. Hence we must work with the dual Hp, (Yi(N)g 9p)"
as a T[Gal (Q/Q)]-module to have the relation Ty = Fy + (€)F} valid for ¢ fpN.
Equivalently we consider the Gal(Q,/Qy)-representations D(H},y) for each ¢
prime to p/N. Another advantage of these representations is that they tend to
have positive weights. However, this use of the dual gives us a contravariant
correspondence between crystalline and étale, allowing ample cause for confusion
but also making it more interesting.

By a standard argument (cf. [14, Sect. 2.14]) the T/m"™[Gal (Q/Q)]-module

Héar(yl(N)@7 0?)/mnHl (Yl(N)@s ﬂp): n >0,

par

has a decomposition series whose subquotients are constituents of the dual p),
of pm .



12 G. FALTINGS AND B. W. JORDAN Isr. J. Math.

In case py, is irreducible, the crystalline information of Theorem 1.1 readily
yields the following theorem.

THEOREM 2.1: Let m C T be a maximal ideal with k = T/m of characteristic
p. Suppose py is irreducible. If p > k, then:
(1) HL,,("i(N )g 9,)[m]V is isomorphic to the k[Gal (Q/Q)]-module corres-
ponding t0 pm. In particular dimy H}, (Y1(N)g, 9p)[m] = 2.
(2) The local ring Ty, is Gorenstein.

Proof:  Firstly observe that H,, (Y1(N )5 9,)[m] # 0 since T operates faithfully
on Hp, (Y1(N)g,9p)". This can be seen from the complex theory (specifically the
Eichler-Shimura isomorphisms). Let W be the k[Gal (Q/Q)]-module correspond-
ing to pm. Then because pyn, is irreducible we have that the semisimplification
of H}, (Yi(N)g, 9p)m]" is isomorphic to W¢ for some d > 1 (cf. [14, Sect.
2.14)]). By Theorem 1.1 the Gal(Q,/Q,)-representation H;ar(Yl(N)@p,Ep)[m]v
is crystalline with Hodge weights 0 and k — 1; the same statement applies to pm.

Set Sy = Sp(T1(N)). If M is the F-crystal corresponding to
(Héar(Yl(N)@P, 9,)[m])Y, then grim*(M) = (Sk/pSk)[m] which is of dimen-
sion 1 over k by Multiplicity One. But taking the semisimplification we have the
isomorphism

(H;ar(YI(N)@’ —&p)[m]V)ss = Wd for some d Z 1

by Brauer—Nesbitt. As grp is exact (morphisms of F-crystals are strict), this
forces pm to correspond to an object in MF(Z,) with gr‘;-—l of dimension 1
over k and d = 1. Accordingly we must have that gr% is of dimension 1 over k
since the total dimension is 2. In other words, both weights 0 and k£ — 1 must
occur in pm with multiplicity one and hence W = HJ_ (Y1(N )% 9,)[m]Y. This
establishes (1). As gr%(M) = (S;/pS;)im] then has dimension 1 over k, this
gives the Gorenstein condition in (2). |

In case pp, is reducible it is much harder to analyze. To apply the crystalline
results we first observe the following:

LEMMA 2.2: Let ¢: Gal(@p/Qp) — F: be a character and denote by
x: Gal(Q/Q). — Fy C F: the p-cyclotomic character. Denote by I C
Gal (@p/ Q,) the inertia subgroup. Then v is crystalline of weight s, 0 < s <
p—2,ifand only ify = x* on I.
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Proof: The statement depends only on inertia, so we pass to Q;™". Let M be
the F-crystal corresponding to the crystalline character ¢: Gal (Q,/Q3*) —» F:
which we assume to be of weight 5,0 < s <p—2. Then M = F°M =F,-efora
basis element e. We have that ¢*e = ue for a unit u. The unit u determines the
isomorphism class of the one-dimensional M of weight s subject to the change of
variables that u and uA“A~! define isomorphic M for Frobenius automorphism
o and any unit A in F,. But then by Hilbert 90 H'(Gal (F,,/]F,,),F:) = 1. Hence
up to isomorphism there is only such M; obviously x° is crystalline of weight s.
]

The crystalline results in the reducible case then yield the following.

THEOREM 2.3: Suppose pn, is reducible. Then

Pm = ® B !

where a, 8: Gal (Q/Q) — k* are characters and x: Gal (Q/Q) — Fy Ck*is
the p-cyclotomic character. The characters o and (3 are unramified outside pN.
Ifp > k, then a and B are unramified at p.

Proof: If p > k then at p p, is crystalline, of weights 0 and £ — 1. As in the
proof of 2.1, Multiplicity One on cusp forms implies that pn, corresponds to an
object in MF(Z,) with grh! and grd both of dimension 1 over k. The result
then follows from 2.2. |

3. Classification of m C T with p,, reducible

3.1 CONSTRUCTING EISENSTEIN SERIES VIA GEOMETRY. Before studying
Eisenstein ideals we must first review the relevant basic material on the modular
curve X;(N) and the classical function theory associated to I'y(N).

Firstly recall that the cusps of X;(N) correspond to degenerate elliptic curves
and may be parametrized by pairs ({,a) with { € py, a = i/N. € Q/Z with
N, = N({,a) equal to the denominator of a. Define Ny, = Np((,a) by N =
N,.Ne. The parameters (¢, a) correspond to the data (E = G,,/¢%, = = ¢ - ¢),
which is defined over Z[1/N, ¢]{[g/¢]). Note that the base Z[1/N, ¢]{[g"/"<]] has
INe \y pgt/Ne pN

automorphisms ¢ p"e = 1. Therefore we have the equivalence:

(5) (¢,a)~ (¢p,a) forall p€ pn,.
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Denote by ((, a) the equivalence class of the parametrized cusp ((, @) with respect
to the equivalence (5). We call {{, @) an oriented cusp of X;(N). Additionally the
Tate curve E = G,, /¢% has automorphism group (1), inducing an equivalence
on the set of parametrized cusps

(6) (€ o)~ (¢7H ~a).
The equivalence (6) induces an equivalence
(7) (Cv a) ~ <C_17 _a)

on the set of oriented cusps. Denote by [(, a] the equivalence class of an oriented
cusp (¢, a) with respect to the equivalence (7). Then {[(, ]} is naturally iden-
tified with the set of cusps on X;(N). For g-expansions however we shall need
parametrized cusps.

Cusps with N,, = N, N, = 1 are called multiplicative cusps. The oriented
cusp oo = ((p, 1) where (p is a fixed N** root of 1 is a multiplicative oriented
cusp. The set of all multiplicative oriented cusps is then given by (d) - 0o, d €
(Z/NZ)*. Cusps with Ne = N, N, = 1 are called étale cusps. The oriented
cusp 0 = (1,1/N) is an étale oriented cusp; the set of all étale oriented cusps is
then given by (d) -0, d € (Z/NZ)*. The remaining cusps with N,, # 1, N. # 1
are called cusps of mixed type.

We now turn to function theory. Let R be a commutative ring with 1/N € R.
Denote by My (R) the R-module of modular forms of weight & for I';(N) defined
over R. By definition, Mx(R) = H%(X1(N)/r, U, (v)(cusps) ® w®*=2)) The
cusp forms of weight k, Sk(R) C Mi(R), are defined by Si(R) = H*(X1(N),g,
Q}(l N @ w®*=2)), As in our earlier general foundational comment in Section
1, if N < 3 it is necessary to use stacks or auxiliary level structure for such a
definition of Si(R). The Kodaira-Spencer class gives an isomorphism of sheaves
i w® = le( w)(cusps) on X1(NV), which in turn gives an isomorphism of R-
modules M (R) = H(X;(N),w®*). Via this isomorphism we define the notion
of g-expansion of a modular form. For any parametrized cusp (¢, @), f € My(R)
has a g-expansion at (¢, a), f(¢,a)(q) € R[¢][[g*/™¢]], defined by

F(Gm /g% @ = (- %) = f(¢,0)(q) - (dt/t)®F.

The customary and convenient notation f({, a)(q) for g-expansions is misleading
in that f(¢,a)(q) is a power series in ¢'/Ve and not g. We will occasionally
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abuse notation and write f(¢,a) = f(¢,a)(q}/N<) for the power series in q!/™Ve

with coefficients in R[(] given by f((,a)(g). It is important to note that the
g-expansion at {(,a) depends on the parameters and is not invariant under the
equivalences (5) and (6). Specifically suppose o™+ = 1 and define (¢')}/Ve =

oq*/Ne. Then
(Gm/d", ¢+ q%) = (Gm/(d)%, (o™ N - (¢)").
Therefore

(8) F(&a) (g Ny = f(¢a™N a)(ag"/Ne)  for o € un,.

Likewise one has
(9) F(¢Th =a)(g) = (-1)*F(¢, a)(@)-

Remark 3.1: A modular form f € Mg(I';{N)) then has a g-expansion at a
parametrized cusp (¢, ) given as f({,a)(q) = > or, an(C, 0)g/Ne(:eD) | There
are important cases when the coeflicients a,(¢, @) depend only on the oriented
cusp (¢, a), i.e., are invariant under the equivalence (5):

1. We see from equation (8) that the constant term ao{f; (¢, @)) is independent
of the the parameters ((, «) used for the oriented cusp ¢ = {¢,a). Hence
we write ag(f;c).

2. If the oriented cusp c is multiplicative then it has a unique parametrization
¢ = (¢,0) for ¢ some primitive N** root of 1. Hence we write f(c)(q) =
S san(fic)g™ in this case. In particular any f € My (T'1(N)) has a well-
defined g-expansion at the oriented cusp oo.

So for f € M(T'1(IV) we define:

(10) ao(f) = Z ao(f; ¢)c € Rloriented cusps).

oriented
cusps ¢

Note that there is a homomorphism of R-modules
ag: Mi(R) — Ho(cusps, Ww® ® R).

The cusp forms Sx(R) C M (R) are then equal to the kernel of @y. Let Ex(C) C
M (C) be the space of Eisenstein series, i.e., the orthogonal complement to
Sk(C) under the Petersson inner product. Then, for £ > 3, ap: Ex(C) —
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H°(cusps,w®* ® C) is an isomorphism. (For k = 2 @, is injective with 1-
dimensional cokernel.) The relationship between aq and ag is as follows. Observe

that the differential (dt/t)®* as a chosen generator canonically identifies
HC(oriented cusps,w®* ® R) = R|oriented cusps].

On the other hand, there is only a noncanonical isomorphism between
HO(cusps, w® ® R) and R|cusps]. In fact, to choose an isomorphism is equiv-
alent to choosing an oriented cusp defining each cusp. Therefore we have the

commutative diagram below, where the vertical map is taking the quotient by
(£1):

HO(oriented cusps,w®* ® R) = Roriented cusps|

/ l/(ﬂ}

M (R) 0 HO(cusps,w®* @ R)

We recall from Section 1 that we have the following Hecke correspondences on
the universal elliptic curve 7: E — X;(N):
o Corr(T,) with the prime £ not dividing N
o Corr(U,) if the prime ¢|N
e Corr({d)), (d,N)=1
s Corr(wc,p,), where N = TS with (T,S) = 1 and {7 is a primitive T** root
of unity. If ¢ is a primitive N** root of unity we write w¢ instead of w¢, .
The isomorphism of sheaves w®? —=» Q!(cusps) on X;(N) given by the
Kodaira-Spencer class induces an isomorphism between H%(X:(N)/g,
Qk, (v)(cusps) ® w®®=2) and HO(X1(N),g,w®*). The space of modular forms
M, = Mi(R) may be identified with either of these cohomology groups. The
Hecke correspondences Corr on the universal elliptic curve 7: E — X;(N) in-

duce pull-back morphisms Corr® on
H°(X1(N)r, le(N)(cusps) @ w®*=2)  and HO(X1(N),p, w®*).

(There are also induced push-forward morphisms which we do not consider.)
However a crucial point is that the Kodaira-Spencer isomorphism i: w®? =,
Q}Xl( ny(cusps) on X1(N) is not Hecke-equivariant. Specifically under an isogeny
Kodaira-Spencer introduces a factor equal to the degree of the isogeny. Hence

there are two contravariant actions of the Hecke operators on M. The action
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which gives the classical formulae is that of HO(X(N),w®*~20 Q! (cusps)). This
is also the group arising from the de Rham complex and crystalline cohomology.
Hence it is necessary to take this action in order for the Comparison Theo-
rem between p-adic étale and crystalline cohomology to be Hecke equivariant.
We identify My(R) = HY(X1(N)/r, Q, (v, (cusps) ® w®*=2)} " The action of
Corr(Te)* for the prime ¢ JN on f € M (R) will be denoted simply T;f. The
pull-back action Corr(T,)* on H®(cusps, w®* ® R) will be denoted simply by T.
Accordingly we take the dual action on the cusps—thus cusps are pushed forward
and functions on cusps (i.e., cohomology classes) are pulled back. For an oriented
cusp ¢ € Rforiented cusps| = HO(oriented cusps, w®* ® R) we denote Corr(T,)"c
simply by Tyc. The pull-back actions for the rest of the Hecke operators will be
similarly denoted. With this Hecke action on the cusps the homomorphism of
R-modules
@o: My (R) — H (cusps,w®* © R).

is not Hecke-equivariant.
Suppose N = ST with (S,7") = 1. Then there is a corresponding factorization

of cusp data. Namely for any elliptic curve £ we have

(11) E[N] —=+ E[S] x E[T] via E[N] > P — (TP, SP).

In particular consider the Tate curve G,, /¢* with the point ¢ = (§,¢/¢ of exact
order N where (y is an N-th root of unity. Write N,,(c) = N,, = S;,,T,, and
N(¢) = N, = S.T. with S = S,,,S., T = T, T.. Set (s = (% and (r = (5. Un-
der the isomorphism (11), this point of order N corresponds to the pair of points
(CLg'Tm/5¢, (1.g"5/Te).  Parametrized cusps (¢},i/N.) on X;(N) correspond
one-to-one with pairs of parametrized cusps ((Cé(s), 1(S)/Se); ((%(T), i(T)/Te)).
By simple computations on the Tate curve G,, /¢% we assemble a “formulaire”
for the Hecke actions. A remark on the notation used in the formulae follows the

proposition.

PROPCSITION 3.2: For a modular form f € M(R) and a cusp ({,a = i/N,)
we have:

1. ({(d)f)(C, a)(g) = f(¢?, da)(g)-

2. (Tef)(¢,@)(@) = 6571 F (€5 )(g)) + § Doy F(CCT, €a)(Ceg™ ).

3. 10N, (V)G 0)la) = 7 3 FIGG ba)(Gea).

ct=1
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If€ [Nom, (Uef)(¢,@)(g) = f’“;‘f(cf,a)(qe)
7 2 S )G,

¢=1
G Nm AN/

4. If S;n #1and S, # 1,

(wes f) ((cs‘s), 49)). (o, ’(T’)) (q) =

e

mf ((C—l/ i(S) J(;)n )i ( %(T)Sm’i(?se)> (C;ﬂ@qs /s)

IfS,=1(s0S.=9),

wee) (0 5@ 5D ) 0 = 57 (1657 0n G, 5D ) (79,

IfS.=1(so S, =5),

weo) (@205 @ ) = 5017 (0. 255 (@2, ) ) 09,

Remark 3.3:  We will explain in detail the notation used in Proposition 3.2(2),
the other formulas being completely analogous. Choose p so that p™¥e = (;. Then
F(C¢ 7, €a)(Ceg'/?) means the power series f((p~*Ne®, £a)(pg/tNe) in pgl/tNe.
The notation is justified since the power series is independent of the choice of p.
If we instead took j = pr with 7V =1, then

(AN L) (pg N+4) = f(GptNeor=tNe, ba) (7 pg!/*N)
= f(¢p™* N, £a)(pg'/*Ne)

by formula (8).
This notational convention is also used in the next proposition.
The Hecke action on HO(oriented cusps,w®" ® R) 2 R|oriented cusps] is

analogously given by:

PROPOSITION 3.4:
L (d){¢, @) = (¢4, da).
2. Te(G, ) = (¢t a) + £(¢, £a).
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3. If €N, Ue(C,0) = > (¢ ba).

¢i=1
If€ [N, Ue(C,a) = 5 a) + D (G, a).
¢e=1
G ¢

4. IfS,, #1 and S, # 1,
i(S i(T)
we, <( 35), g)) (D, . )> -
T

s (g5, L8 s, 1005y,

IfS,=1(soS.=9),

IfS. =1 (s0S,, =5),

gy (9,05, 4D)) = 5+ {0, 2=y ™, 1))

Comparing Propositions 3.2 and 3.4 we see the degree of the isogeny entering,
causing ag not to be Hecke equivariant:

PRrOPOSITION 3.5: For f € Mi(R) and ¢ an oriented cusp, we have:

ao(Tef;c) (1/€)ao(f; Tec),

ao(Uefs¢) = (1/8)ao(f; Uec),

ao({d)f;e) = ao(f;({d)c),

ag(wes fie) = (1/8)ao(fiwese).

In particular apply Proposition 3.4 to oo = ((p,0) to deduce that:

Te(( yoo) = f(1+(f)5’° 1)( Joo, £ AN,
(12) Ue({d)oo) = (d)(boo + 3721(Co, 5/£)), €IN,

weo ({d)oo) = (=1)*(d~*)0.
Likewise Proposition 3.2 applied to oo yields the classical formulae for Hecke

operators on Fourier expansions. If f € My(R) has g-expansion at oo given by

f(00)(@) = L5720 ang™ and (()f)(c0)(q) = 327 bng™, then

(13) (Tef)(00)(g) = Y aneq™ + €571 3 bag™, (6, N) =1,
(Uef)(o0)(g) = 3 aneq™, £IN.
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The notion of twisting a modular form by a Dirichlet character admits a de-
scription in terms of moduli which we now recall. Suppose M is a positive
integer which divides the level V. Let 7 be a Dirichlet character of conductor
M. Consider (E, z) with x an exact M N-division point on the elliptic curve E.
Then E' = E/(Nz) possesses canonical M-division points, namely N/MZ and
7 = Im(y) with (Nz,y) = (o is a fixed primitive Mth root of 1. For A € (Z/MZ),
set Ex = E'/(§ + )\N T), pa: E — E) the natural isogeny, and z) = ¢y (x) on
E,.

Definition 3.6: Suppose f is a modular form of weight k£ on I'y (N). Define the
modular form f7 = f ® 7 of weight k¥ and level NM by

[(Ex)=/MY) 7 30 1w e (Ex ).
AEZ/MZ p€(Z /MLY%
If f has character € then f7 has character e72.

We compute the effect of twisting on ¢g-expansions adhering to the above nota-
tion. So consider (E,z) = (G /g%, { = (mn) with = h a point of exact order
MN. The curve E’ is then E/{Nz). The Mth power map gives the identifica-
tions:

~ N
E' -=+G,/qM%  with T = (y, M-f:@, and § = q.
The curve E, is correspondingly given by G, /{q(3,) with T = (y. Hence if

f(q) = f(o0)(q) = ano anq™ we have:
(14) fl@ = yMt S N r(w " M*f(e¢))

XEZ/MZ ue(Z/MZ)*
= 1/MZZ Mleses (z an(a3) )
n=0
= Za" ‘1/M (ZZT(") (()n—#)z\) T
n=0 A ou
= Zr(n)anq".
n=0

We therefore recover the classical definition of twisting via the above effect on
g-expansions.

From Definition 3.6 the effect of the Hecke operators on twists of modular
forms is easily computed:
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PROPOSITION 3.7:

1. To(f7) = 7(0)(Tof)" for a prime £ fN.

2. Ue(f7) = 7(&)(Uef)7 for a prime ¢|N.

3. (d)- fT=1(d*((d)- f)".

Finally in this preliminary section we consider Eisenstein series. Recall that
E(C) is the orthogal complement to the cusp forms Sx(C) = H?(X,(N),
w®*=2) © Q') in the space of modular forms My(C) = HO(X(N),
w®*=2) & O1(cusps)). For simplicity we assume k > 3 so that ag: Ex(C) =
H®(cusps, w®* ® C). So then Eisenstein series are identified with their constant
terms. In particular we can use this both to construct Eisenstein series and to
compute Hecke actions on Eisenstein series. Suppose ¢ is a Dirichlet character of
conductor N with e(~1) = (—1)*. Let E(e,1) € Ex(C) be the Eisenstein series
with

ao(E(e,1) = Y e(d)d)-0.
de(Z/NZ)*
By definition E(e, 1) is a modular form of weight k on I'; (V). We remark that if
k = 2 then the image of ¢¢ is the codimension 1 subspace consisting of elements
of trace 0. In this case it is necessary to assume that the character ¢ is primitive
to satisfy the condition that the sum of the residues must be 0.

For any modular form f of weight k with g-expansion at oo given by f(o0)(q) =

3 o ang™ we have the associated Dirichlet series L(f,s) = Y oo ; ann™°.

ProprosITION 3.8:

1. (d)(E(e, 1)) = e(d)E(e, 1)

2. To(E(e,1)) = (e(€) + £F"1)E(e, 1) for all £ N

3. U(E(e,1)) = £F"1E(e,1) for all £|N.
Hence L(E(e,1),s) = C(e)L(s,e)L(s + 1 — k, 1) for a nonzero constant C(e).
Proof: Set E = E(g,1). Then by Proposition 3.5 we have for ¢ an oriented cusp
ao({d)E; ¢) = ao(E; (d)c) = 0 unless ¢ is étale. Since

ao(E; (d){1,d'/N)) = ao(E; (1,dd'/N)) = e(dd') = ao(e(d)E; (1,d'/N)),

we conclude that ag((d)E) = ao(e(d)E). Hence (d)E = ¢(d)E, establishing (1).
For (2), Proposition 3.5 gives that ao(TeE;c) = (1/¢)ag(E; Tec) = O unless the
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oriented cusp c is étale. We furthermore have
ao(TE; (1,d'/N)) = (1/€)ao(E; Te(1,d'/N))
= (1/€)ao(E; €5(1,d'/N) + £(1,4d'/N)) by Prop. 3.4(2)
= ao((¢*~" + (O)E; (1, d'/N)).
Therefore we conclude that ag(TeE) = ao((£*~! + £(¢))E), implying (2).
Likewise for (3) we have that ao(U:E;c) = (1/€)ao(E;Usc) = 0 unless the
oriented cusp c is étale. Moreover
ao(UeE; (1, d'/N)) =(1/€)ao( E; Ue(1, d'/N))

=(1/0)ao(E; €51, d'INY + 3 (¢ "4/ ed INY)
Ce#l
by Proposition 3.4(3)

=ao((¢*71E; (1,d'/N)),

proving (3) and concluding the proof of the proposition. |
Having defined E(e, 1) by giving its constant term, we see from Proposition 3.8

that it is an eigenfunction for the weight & Hecke algebra T for I'y (N). We need
to determine its g-expansion at 0o, E(e,1)(00)(g). For this we use its functional
equation. In general, suppose f € Mi(I'1(IN)) with f(00)(g) = S0y ang™. Set
f=f—aoand

D(f,s) = / fz “dz—/ Flivydy;

the integral is absolutely convergent for Re (s) > k. If Re(s) > k, then

D(f,s) =T(s)(2n)"°L(f,s), where L(f,s)= T

[0 -1

TTIN oo
and put ¢ = f|[7]x € Mk(T1(N)). So by definition g(z) = N~*/2:7%f(—1/N2)
for z in the Poincaré upper half plane. Observe that g = N~%*~2/2y,(f) where

Let

¢ = e*™/N, We denote the g-expansion of g at oo by g(c0)(g) = Y _nr o bng™ and
set § = g — bg. Then for Re (s) > k,

1/vVN . =) B
(15) D(f, s)=/0 f(iy)y“‘ldzﬁ/1 fly)y*'dy

IVN
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1/vN oo .
- / Fliy)y 'y - N*(ao]s) + / Fliy)y*dy.
0 1/VN

But using the functional equation f(—1/Nz) = N*¥/22%g(2) we have that
1/vN oo
a0 [ ey = [ NNy oy
0 1/VN

— —ikN—s/Q ( bo ) + ika/Q-s/ g(iy)yk~1—sdy_
k — S 1/\/ﬁ

Now the integrals

/ fliy)y*~'dy and / G(iy)y* " ~°dy
1/vN 1/VN

are absolutely convergent for all s and so are holomorphic throughout the complex
plane. Putting equations (15) and (16) together then, we see that D(f, s) can be

written as

(17)  D(f.s) = /WN

b
_N-s/2 (80 Lk 20
(3 Y sk

o0

Fliy)y™\dy + FNH/2 / Gyt dy
1/VN

We record this information for future reference:

PROPOSITION 3.9: Let f € M(T'y(N)) with f(00)(q) = Yneoang™. For

_ 0 -1
Y N ol
set g = f|[v]x and g(o0)(q) = Y or o bng™. Then D(f,s) has a meromorphic

continuation throughout the complex plane with simple poles at s = 0 and s = k.
Moreover Ress—o D(f,s) = —ao and Res,—y D(f,s) = i* N—*/2p,.

We now apply this proposition to find the g-expansion E(1,¢). We shall need
a formula (cf. [4, Chapter 9]) arising from the functional equation of L(k,¢):

(18) For ¢ primitive with e(—1) = (=1)*,
_ T(e)(2m)FN—Fki~k _
L(k,e) = N0 L(1—k,e71).

Here 7(¢) denotes as usual the Gauss sum associated to e.
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PROPOSITION 3.10: Suppose e(—1) = (=1)¥. Set L(s,e)L(s +1 — k,1) =
S yann”®. Then

ik

E(e,1)(c0)(q) = 6)2%4» Wherec(e):(27r)-k1“(k)L(k,s)'

If £ is primitive, then there is the equivalent formula

_1\ko Nk
N Vi
T(e)L(1 — k,e~1)
Proof: Let f = E(e,1). By Proposition 3.8, L(f,s) = CL(s,e)L(s + 1 — k,1)
for some constant C = C(e). Then D(f,s) = C(2x)~°T'(s)L(s,e)L(s + 1 — k, 1).
It follows that
Res,=t D(f, 8) = C(2m) T (k)L(k,e).
On the other hand, apply Proposition 3.9 to f = E(e,1). Then g = f|[y]s =
N—E=2/2y.(f) satisfies

ao(g; 00) = N=H=D 24 (we(f);00) = N=*=DI2N*=1g0(f,0) = N*/2,

and hence Res,—, D(f,s) = i*. Equate the two expressions for Res,—; D(f, s)
and solve for C = C(g). We find

k
(27)~FL(k)L(k, )

=C(e) =

If ¢ is primitive, apply equation (18) to obtain the indicated formula for C(¢)
and conclude the proof of the proposition. |

Normalize by setting

. —1)kr p ey
E(a,l)zc—ze—)E(e,l):( D (5)2";\(,1 567 Bien),
Then
(19) E(e,1)( Zanq where L(s,e)L(s-{-l—k,l):iann_s
and

(20) ao(E(e,1)) = (-1)**(2m)*T(k)L(k,e) Y e(d)(d)-0.

de(Z/NT)*
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If ¢ is primitive then by equation (18) this may be rewritten

~1)kr(e —k, et
@) ke = TR s a0

de(Z/NZY*

Now suppose N = ST with (5, T) = 1. Let ¢ be a primitive Dirichlet character

of conductor N and factor
e =¢egep: (L/NLY* = (Z/SZ) x (Z/TZ)* — C*.

For an elliptic curve E we identify the data (F,xry) where zy is a point of exact
order N with (E,zs = Txy,xr = Szy). Diamond operators (d)s then act by

(dys(E,xg,x7) = (E,dxs,zT).

By definition, (d) = (d)s(d)r. It is easily checked that w¢ o (d)s = (d™')s 0w,
and w¢, o (d)T = (d)r o w¢g. Factoring into S- and T- components we see from
equation (20) that

ag(E(e, 1)) = (~1)**(2m) T*T (k) L(k, €) 22 4 1y €s(@)er(b){a)s(b)r - 0

- =D re)Lbizke ) Y (ap Es(@)er(b){a)s(b)r - 0 if & is primitive,

(22)
Here the sum is taken over (a,b) € (Z/SZ)* x (Z/TZ)*. For any oriented cusp

¢ we have from Proposition 3.5 that
ao(wes E(e, 1);¢) = (1/)ao( Ele, 1) wese).
Hence ao(w¢s E(e,1);¢) = 0, unless S = Ny, (c) and T = N,(c), i.e., unless
¢ = {a)s(b)7((Cs,0); (1,1/T))  for some (a,b) € (Z/SZ)* x (Z/TZ)*.
But we compute

ao(wes E(e,1); {a)s{0)r{(¢s, 0); (1,1/T))
= (1/8)ao(E(e, 1); {a™")s(b)rwes (Cs,0); (1, 1/T)))
= Sklag(E(e,1); (a™ ) g(b)r0)

(-1)k7(e)L(1 — k,e’l).

= ¥ teg a)er(b) SN

Hence we obtain the formula:
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ProrosITION 3.11:
ao(w(sE(e 1))
= (-1)*i*(2m)T*T(k)L(k,€) Y €5 (a)er(b)(a) s(b)T((¢s, 0); (1,1/T))
(a,b)
—1)kr — kel
= g}fT’l b )Zegl(a>eT(b><a>s<b>T<(cs,o>;(1,1/T>>

(a,b)

if € is primitive.
To shorten notation set f = w¢; E(e,1). Then the Hecke eigenvalues of f are

as follows.

PROPOSITION 3.12:  For f = w¢g E(e, 1),

(1) (d)f = e5' (d)er(d) .

(2) Tef = (ex(8) + 5 (1) f i€ € JN.

(3) Uef =5 ()¢ f i 4IT.

(4) Ifeg is primitive, then Uy f = ep(€)f if £]S.

Proof: As usual, Proposition 3.5 reduces the problem to the action of the Hecke
operators on the oriented cusps and this is in turn computed in Proposition
3.4. For (1), note that since ao({d)f;c) = ao(f;{d)c) for an oriented cusp c
Proposition 3.11 shows that ag({d)f;¢) = 0 unless ¢ = {a)s{b)r{(¢s,0); (1,1/T))
for some (a,b) € (Z/SZ)* x (Z/TZ)*. But
ao((d) f; (a)s(b)r{(Cs,0); (1,1/T)))

=ao(f; (da)s{db)r((Cs,0); (1,1/T))

=e5 ' (d)er(d)ao(f; (@) s(0)((Cs, 0); (1, 1/T))).
Hence ao((d)f) = ao(e5' (d)er(d)f), establishing (1).

For (2), we recall the formula (Proposition 3.5) ao(Tef;c) = (1/€)ao(f;Tec)
for any oriented cusp ¢. Appealing to the formula of Proposition 3.11 we deduce
that ao(f;¢) = 0 unless ¢ = (a)s{b)r((¢s,0);(1,1/T)). Moreover

ao(f; Tela)s{b)r{({s,0): (1,1/T)))
=(1/0)ao(f; (@) s(b)rTe((Cs,0); (1,1/T)))
=" ao(f; (€&, 0); (1,b/T))
+ ao(f; (¢4, 0); (1,¢¢/T))) by Proposition 3.4
=(¢e5 (0
+ er(€))ao(f; (a)s(b)r{(Cs,0); (1,1/T)))-
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We therefore have that

ao(Tef) = ao((¢* ez (€) + e (6) f),

proving (2).

The proof of (3) in the case ¢|T is exactly analogous to the proof of 2) above
for the action of Ty and is left to the reader. In case £|S, ao(f;Uec) = 0, unless
Sm(c) =S or Spu(e) = §/¢, i.e., unless

¢ = (a)s(b)7((¢s,0); (1,1/T)) or ¢ = (a)s{b)r{({s,i/€); (1,1/T)), 1<i<L.

Now by Proposition 3.4,

Ue((Cs,0); (1,1/T)) = €((Cs,0); (1, ¢/T)).
Hence

ao(Uef; (a)5(b)1{(Cs,0); (1,1/T))) =ao(f; (@) s(b)rUe((Cs, 0); (1,1/T)))
=ler(£)ao(f; {a)s(b)T((¢s,0); (1,1/T))).
On the other hand, for the oriented cusp ((¢s,7/¢); (1,1/T)), 1 < i < £, we

have from Proposition 3.4

Ue((Cs» /05 (1,1/T)) = >~ ((¢sC,0); (1,£/T)) if (¢, 8/¢) = ¢,
¢=1
Ue((Cs,1/); (1,1/T)) =€5((¢4,1/€); (1,€/T))
+ 3 (GG 0Y (L g/T)) it (¢, 576) = 1.

¢i=1
Smacs/t

Hence we compute using the primitivity of eg
ao(Uef; {a)s(b)r((Cs,i/£); (1,1/T)) = ao(f; (a)s(b)rUe((Cs,3/£), (1,1/T))
= er(O)ao(f; (a)s(b)r((Cs,0); (1,1/T)) > es(z) = 0.

z€(Z/SZ)*
=1 (mod S/¢)

We have now shown that ao(Uef) = ao(er(£)f) in case £]S and ¢ is primitive.
This then establishes (4) and the proof of the proposition is complete. |

We will need the g-expansion of f at oo, and its computation involves the

operator “Frobenius” operator V; on modular forms. Suppose g € My(T1(N))

b
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£|N, and g(00)(q) = Y. ang™. Then V; acts by Ve(g) = Y a,q™. In the
proposition below we give the moduli mterpretatlon of Ve which immediately
implies that V,g € M(T'1(N¢)). The formulae in terms of g-expansions show
that g — VyU,g is annihilated by U, for all g € My(T'1(N).

PROPOSITION 3.13: Let { be a prime. Define wg: X1(N{) — X;(N) by
m(E,z) = (E /{Nz) ,T) for = a point of the elliptic curve E of exact order N¢.
Then for g € Mp(I'1(N)):

(1) Vlg) = ¢ =Drzg.

(2) Suppose £S|N with (S,¢) = 1. Then

ao(Ve(9); (Cne, 1/58)) = ao(g; (N, 1/5¢)).

(3) Suppose L is square-free and SL|N with (S,L) = 1. Then

ao(J1gzVeg; (Cvi,1/SL)) = ao(g; ((n, 1/SL)).

Proof: For (1), we compute

E D (rig) (o)) (%) @ (4)°

= f—(k_l)g(Gm/(Ce,qZ),CNz))(Q)(Q) ® (%ﬁ)mk—z)

g

= e—(k_l)g(Gm /qu,CN)(q)(i‘é) ® (%Tl)eb(kd)

q

= 9(o0)(¢") (%) & (£)°*7,

establishing that Vy(g) = £~ Vr}g.

For (2) we have

Vilo)(ne 1/50)(@) (%) ® (4)°¢?
= =5 V13(9)(Grm /4%, Cneg ™)
= 5D g(Gn /(g ,Ce), Cveq ) (£
— p—(k=1) 9(Gn /q’“’Z,C 1/sz (gqu)
= g(Cn,1/58)(g%)-

Hence ao(Veg; (Cne, 1/52)) = ao(g; (Cn,1/S5€)). The assertion (3) then follows
from (2) by induction. [ |
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Recall now that f = w¢, E(e,1). For ¢ primitive set

h=[[0 - er@Ve)f.

¢S
Then A is a modular form of weight k on I';(V Has 7).
PRrROPOSITION 3.14:
(dYh =5 (d)er(d)h for (d,N) = 1,
Toh =(e7(€) + e5' (£)*"1h  for £ fN,

Uoh < eg (065 h  for T,
TV 0 for ¢S if eg is primitive.

Assume e is primitive and set H = E(e,1)@e'. The function H is a modular
form of weight k on I';(NS). Computing its Hecke eigenvalues via Proposition
3.7 we see that they are the same as the eigenvalues of h given in Proposition
3.14, and hence
(23) h=MH for some constant A.

Recall that the modular form h is of level V Hll g ¢ In the above we view it
as having the larger level NS via the forgetful map. The forgetful map is the
natural covering X;1{M') — X, (M) defined for positive integers M|M’ in terms
of moduli by (E,z) — (E,(M'/M)z) where E is an elliptic curve with a point x
of exact order M.

To compute this constant A, consider the oriented cusp ({ng,1/N) of X;(NS)
above (via the forgetful map) the oriented cusp

(Cny 1/T) = ((Cs,0); (¢, S/T)) = (s, 0);(1,8/T))

of X1(N). Since ao(f;¢) = 0 for any oriented cusp ¢ of X;(N) for which S,,(c) #
S, we have:

(24) ao(h; (Cns, 1/N)) =ao(f;{((ns,1/N)) by Proposition 3.13, (3)

f;
(25) = ao(f;((¢s,0); (¢, S/T))
_ (=1)*r(e)L(1 — k,e™ 1)

(26) ONT* -1

er(S) by Proposition 3.11.

We now determine ao(H; ((ns,1/N)). This involves tracing through the defini-
tion of twisting given in Definition 3.6; we employ the notation used there for easy
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comparison. Set F = E(e, 1); F is then a modular form of level N. The Dirichlet
character £5' has conductor S. Let the pair (E,z) consist of an elliptic curve E
together with an exact NS-division point z. The elliptic curve E' = E /{Nx)
possesses exact S-division points T and 7 with (Nz,y) = (s. For A € Z /SZ,
we have the isogeny px: E— E) = E' /{ + AST). Put ), = ¢)(z). Then

27 HEx)=1/S"" 3 3 5w eiF(ea(E 7).
AEZ/SZ pe(Z/SZ)*

For (E,z) = (G /q%, (nsq/™N), we have

S
(28) E'=B/(Na) = G /(g", ¢s) ' G /g,
z=(ng"/7,
¥=q since (Nz,q"/%) = (s.
We now proceed to find (Ej, ) associated to (E,z) = (G /¢%, Csng*/N).
(20) Ex = E'/(F+ATT) = G /(¢°%, a(na"T)™) = G /(a°%, (54

Correspondingly we have z» = (y¢"/7. Substituting into equation (27) we obtain

(30) H(Gum/q% (nsg'/™) =
1/S 3 S 5 WG F(Gn /(65 AP, (ngVT).

AEZ/SZ pe(Z/SZ)*

However, we know that F = E(e,1) has zero constant term evaluated at the
oriented cusp

(Gm /(g% C5a** 1), Cng!T)

unless (ng'/7 is étale, i.e. its order modulo roots of unity is N. This in turn
happens exactly when A + 1 = Omod S. Hence

(31)ao(H; ((ns, I/ND=1/S Y e5 (w)¢hao(F; (Gm/{d°%, (5 1), (ngYT))

HE(Z/SZ)>

=1 Y 5 (WCao(F; (G /g% R r(a®)N))
p€(Z/SZ)*

_S*r(egh) (= D)*r(e) L1 — ko)

N by equation (19)

_es(Ter(=8)r(er)L(1 — k,e7")
- 2Tk '
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For the last line above use the identities 7(es)7(e5') = S - e5(~1) and
7(e) = t{eser) = 1(es)T(er)er(S)es(T).

We are now in a position to solve for the constant A such that h = AH as in

equation (23).

(32) h=\H

ao(h; (s, 1/N))=Aao(H; ((ns, 1/N))
(=1)*7(e)ez (S)L(1 - ke™) ) es(Mer(=S)r(er) L(1 — k,e™!)
2NTk-1 B 2Tk ’
the last line using equations (24) and (31). Solving for A again using the identity

() = 1(es)r(er)er(S)es{T), we obtain

(=1)*7(es)

(33) A=Ne8) =T

We now determine the g-expansion of f = w¢y Ee, 1) at oco.

PROPOSITION 3.15: Set L(s,e7)L(s +1—k,eg') = 3.°° a,n~°. Then

n=1

(=1)*7(es)

wes e, 1)(00)(0) = “gm gy

o0
~L(1 - k,sgl)L(O,eT) + Z anq"| .
n=1
Proof: Using the notation of the above discussion,
a1(wes E(e,1);00) = a1 (h;00) = Aay(H;00) = A.

Hence by Proposition 3.12
wes E(e,1)(00)(g) = ao(wes E(e, 1);00) + A Y ang™
n=1

The proposition then follows from the determination of ag(w¢, E(e,1); 00) given
in Proposition 3.11. Recall that for a primitive Dirichlet character y we have for
positive integers k that L(1 — k,x) # 0 if and only if (~1)* = sgn(x) with the
one exception ((0) = —1/2 occurring for the trivial character. Note that this
then gives L(1 — k,e5")L(0,er) = 0 unless S = N. |

Denote the conductor of a Dirichlet character x by

cond (x) = H geonde),

£ prime
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In general given a pair of Dirichlet characters («, 3) we now construct a normal-
ized Eisenstein series E(a, 3) of weight k and conductor N, 3 = cond (a)cond (3)
as follows. Define S’ and T’ with S'T" = N, g, (S’,T") = 1 by the requirement:

(34) { cond ¢(8) > cond ¢{a) for primes £|S’

cond ¢(8) < cond ¢{a) for primes ¢|T".

Then we can factor the characters a and 3:
a=asar, B=PsPr: (L/Nasl) =(Z/S'Z) x (Z)T'Z)* — C*.

Defining S = cond (fBs/), T = cond () and adhering to the definition of A in
Equation (33), set
Definition 3.16: E(a, ﬂ) = WUJCSE(aﬁ_l, 1) @ OZSI,BTI.

We remark that E{a, 3) is well-defined vis-a-vis our definitions of partial w-
operators and twisting. Firstly note that S|cond (a3~!) so that w¢s E(a871,1)

is defined. Next cond (a8~!)|cond (ar)cond (3s/), so E(aB71,1) is a modular
form of level

N % cond (arBs') = cond (ap)cond (Bgr) = ST.
Finally M 4ef cond (ag:Br) = cond {agr )cond (Br) divides N so the twisting
wes E(aBf™,1) @ ag: Br
is a modular form of level
MN = cond (ass )cond (ar Jeond (Bs )cond (B ) = cond (a)cond (3) = Na 5-

Note that if cond ¢(a), cond ¢(3) > 0 for a prime £|N, 5 then the Nebentypus
character ¢ = af of E(, 3) is not primitive. The essential properties of E(a, 3)

are given below.

THEOREM 3.17:  Set N, s = cond (a)cond (5).
(1) (d)E(a, B)=aB(d)E(a, B),
Tg(E(a B))=(a(f) + B(£)¢*~1YE(a,B) for all £ [N,g,
Ue(E(a, B))=((€) + B(£)¢*~ 1) E(ax, B)  for all €| Ny p.
(2) If L(s, a) (s+1—k,B) =30 ann™%, then

E(a, B)(c0)(g) = L(0, ) L(1 = k, 8) + ) ang"

n=1
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Proof: (1) follows from Proposition 3.12 and Proposition 3.7.
As for (2), applying Proposition 3.15 and equation (14) to the definition of
E(a, 8) (3.16) yields

E(a, B)(00)(q) = —L(1 = k,a5' Bs) L(0, a7 ) asBr)(0) + > ang™,
n=1
where L(s,a)L{s+1-k,3) = Zzo:] ann”°. However observe that for characters
X1, X2 and k > 1 with (x1x2)(—=1) = (=1)* we have L(0,x1)L(1 — k,x2) = 0
unless one of xi, x2 is trivial. From this it follows easily that

~L(1 — k,a5' Bs)L(0, ar B NasBr)(0) = L(0,a)L(1 - k, 3),
concluding the proof. ]

COROLLARY 3.18: Suppose a and 3 are Dirichlet characters. Define

E(o, B)(q) = —L{0, ) L(1 = k. B) + > _ ang"
n=1
where ¢ = €2™7 and L(s,a)L(s+ 1 —k,3) = 3.o2  a,n~°. Then E(a,f) is a
modular form of weight k and level cond («)cond (3).

Remark 3.19: A more conventional proof of Corollary 3.18 may be given by using
the functional equations for L(s, ) and L(s, 3) to show that F(a, 3) and its twists
satisfy the correct functional equations. Hence E{a, ) defines a modular form
by Weil's Converse Theorem. This is the approach taken in [19]. Constructing
Eisenstein series via their constant terms as we have done here has the obvious
advantage that it is possible to conceptually treat the constant terms at all of
the cusps; this will be necessary for our subsequent consideration of Eisenstein
ideals.

We lastly analyze the constant term of the Eisenstein series E(a, 3).

THEOREM 3.20: Let Z{o, ] denote the finite extension of Z generated by the
values of the characters a and 3 and set R = Z[1/(2N, ), o, 8] with Ny g =
cond (a)cond (3).
(1) The constant term ao(E(a,B);¢) = 0 for any oriented cusp ¢ with
Ne(e) < T.
(2) Assume (M,S) = 1. Then the constant term ao(E(a, 3);¢c) = 0 for any
oriented cusp ¢ with S.(c) # 1.
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(3) Assume (M,S) =1. Then the constant term
ao(E(e, B); (Cnm,1/T)) = uL(1 — k,a™ ')

for a unit u € R*.
(4) ao(E(a,B)) = L(1 — k,a™'B) - v for a primitive vector v in the lattice
Rloriented cusps).

Proof:  Let F be a modular form of level N and 7 a Dirichlet character of
conductor M|N. Suppose ¢ is an oriented cusp of X;(MN) associated to the
data (F,z) where E is a Tate curve and z is a point of E of exact order M N.
Recall the definition of twisting (Definition 3.6). This constructs an isogeny
éx: (E,z) — (Ex,x)) for each X € (Z/MZ). Let c) be the oriented cusp of
X1(N) associated to (Ex, zx). We have

1 —
(33)  a(F@Tc)= 4oy > > (w5 ao(F; (9a)ec).
AEZ/MZ pe(Z/MZ)*
Consider F = (1/A (a8, 8))wes E(af™1,1) and 7 = as/Br. Then F@ 7 =
E(a, 3) and by Proposition 3.11

(36) ao(F) = L(1 - k,a™'1B) Z Ucc,

oriented cusps c
where each u. is either 0 or a unit in R. Moreover u. = 0 unless N,,(c) = S
and Nc(c) = T in the notation of the discussion preceding Theorem 3.17. Firstly
from the definition of (Ey,z,) we see that if N.(c) < T then N.(cy) < T for
all A € (Z/MZ). This implies that ao(F;cy) = 0 for all A € (Z/MZ) and so
ao(F';¢) = 0, proving (1).

We now establish (2) and (3). So suppose we are in the case (M,S5) =1, i.e,
ag =1 and 7 = Br. Then since all the isogenies A occurring in equation (35) are
of degree prime to S we have S.(c) = Se(c» ), and hence (2) follows from equations
(35) and (36). As for (3), let ¢ = ((mn,1/T). Then c is the oriented cusp
associated to the data (E,z) = (G /q%, CMqu/T). The computation is similar
to that of equations (27)-(31). The main points are that E' = G, /(q%, (M)
with the Mth power map identifying this with G,,/q™%. Accordingly then Z =
(ng™/T and § = q. We have Ey = G, /(¢M%, (3q' ) with x5 = (ngM/7T.
The group generated by z, has order modulo roots of unity equal to T if and
only if M/T has order T modulo (M,1+ As). This in turn happens exactly
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when A & —1/SmodM. Hence ao(Ficx) = 0 for A # (—1/S)mod M and
ao(F;e—1/sy) = v'L(1 — k,a™ ') for v/ € R* by equation (36). Hence from
equation (35) we have

(37) ag(F;c) = uL(l —k,a™'8) where u = 1/M( Z T(u)(()_"/s)u'.
HEZIMT)®

The term in parentheses is just a Gauss sum associated to 7 and so u € R*,
proving (3).
For (4), note that from equations (35) and (36) it follows that

ao(E(a, B)) = L(1 — k,a™'3)-v  for some vector v € Rforiented cusps).

By (3), this vector v is known to be primitive in case (M, S) = 1. We will reduce
the general case to this special case using the formula

(38) Ea,feaz' = ( [] (1-viUo))Fepr.
2|(M,S")

To see this look at g-expansions at oo using equation (14). If F(oco0)(q) =
Y e 0 ang™, then

[E(a, B) ® a5/ )(c0) () = [(F ® 7) © a5')(q)

o0
=Y anas(n)Br(n)agi(n)g = Y auBr(n)g™.
n=0 (no(81.81)=1

But (F ® Br+)(00)(q) = Y7 anBr(n)g", yielding (38).
Now note the formulae

Ue(F ® Br) = (ar(€) + (a5'B) ()" )F ® B+ by Theorem 3.17
and Vy(F®Br)=¢"*VUr;(F®pr) by Proposition 3.13, (1).
Set v = (a5'8)(£) + ar ()¢~ =1, Then we have for an oriented cusp ¢
(39) ao((1 — VeUe)F © Brisc) = ag(F ® Brv, (me)+C).

Setting

¢ =(un, 1T [] 1/8),

(M8
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we claim that

(40) ao(( [ (1-VeUo))F ® Brii ) = ao(F ® Br; ).
(M,S")

By equation (39), this will follow from the assertion that
(41) ao(F & B+, (N7, 1/TLY) =0 for 1 # L|(M, S").

But this in turn follows directly from (2).
We deduce that

ao(( H (1 = VeU)F ® Bre;c’) = uL(1 - k,a"'B)
e|(M,5")

for a unit u from equation (40) and (3) in Theorem 3.20. Hence
ao(E(e, B) @ ag') = L(1 — k,a™'B)-v  for a primitive vector v.

This in turn means that ag(E(a, 8)) = L(1 — k,a~!3) - v for a primitive vector
v, concluding the proof. |

3.2 REDUCIBLE GALOIS REPRESENTATIONS ARISING FROM CUSP FORMS.
Fix a positive integer N and let T be the weight k Hecke algebra for I';(N) as
defined in Section 2. Let To = Z(Ty, ¢ fN;(d),d € (Z/NZ)*) C T be the weight
k restricted Hecke algebra. The full Hecke algebra T is then generated by Ty
and Uy, ¢|N. Suppose m C T is a maximal ideal such that the corresponding
Galois representation py, is reducible. We will call such maximal ideals m C T
reducible.

Eisenstein series furnish examples of reducible maximal ideals. Let R C C
be a finite extension of Z[{x] big enough to contain the values of all Dirichlet
characters of conductor dividing N and set ' =T® R, T, = To ® R. Let K be
the quotient field of R. Suppose E is a normalized weight k¥ Eisenstein series for
I'y(N) with character € which is an eigenfunction of T. Then

E(c0)(g) = Y an(E)q"
n=0

with T¢(E) = a,(E)FE for a prime ¢ /N and Up(E) = a,(E)E for a prime ¢|N . It
is known that a,(E) € R for all primes £ and aq(E) € Koriented cusps]. Suppose
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© C R is a prime ideal with associated valuation v, such that v,(ao(E;c)) > 0
for each oriented cusp ¢ of X;(N).

Definition 3.21: Set

my(E, p) =(Te — ae(E), £ IN; (d) - e(d), (d,N) =1; p) C Tp,
m’(E,SO) :(mO(E3p)7 U( - af(E)’ [lN) g T,,
mo(E go) =m6 N Ty,

m(E, p) =m'nT.

Note that the ideals defined above are indeed proper maximal ideals since
Emod g is a cusp form. The Eisenstein maximal ideals of T’ (respectively T()
are the ideals m'(E, p) (respectively m((FE, p)}, with E an Eisenstein series in
M (T'1(N)) which is a T-eigenform and p C R a prime ideal dividing aq(E; ¢) for
each oriented cusp ¢ of X{(N). The Eisenstein maximal ideals of T (respectively
Tp) are those obtained by contracting Eisenstein maximal ideals of T' (respec-
tively Tg). Note that all Hecke algebras are finite over Z (as modules), hence
finite over each other whenever there is an inclusion. Hence all maximal ideals
contract under the extensions of Hecke algebras considered to maximal ideals.
Also all m’ C T containing a fixed m C T are conjugate under Gal (R).

We can now state precisely the conjecture that all reducible representations
arising from cusp forms should be detected from congruences with Eisenstein

series.

CONJECTURE 3.22:
1. A maximal ideal m{ C Ty is reducible if and only if it is Eisenstein.
2. A maximal ideal m’ C T is reducible if and only if it is Eisenstein.

Our analysis of reducible maximal ideals m{ C Ty (respectively m’ C T') will
be facilitated by the notion of maximal ideals my C Ty (respectively m C T)

which are new of level V.

Definition 3.23: Say that m{ C Ty is new in case the semi-simple representa-
tion pm of Gal (Q/Q) does not occur in cusp forms of any strictly lower level.
Equivalently the eigenvalues for {Ty,£ JN; (d)} associated to m’ occur for no
maximal ideal of level N'|N, N’ # N. Say that m C T is new if the eigenvalues
for {Te, £ IN; {d); Ug, £|N'} occur for no maximal ideal of level N'|N, N' # N.
Lastly a maximal ideal m C T (respectively mp C Tg) is new in case an extension

m’ of m (respectively mj of Tj) is new.
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Suppose a and 3 are Dirichlet characters with cond (a)cond (8) = N and € =
af satisfying e(—1) = (=1)* for an integer k > 2. We then have a, 8: Gal (Q/Q)
— R* C C*. In Section 3.1 we constructed and studied the weight & Eisenstein
series E(a, 8) on I'1(N') with character . Recall that F(a, 3} is normalized and
an eigenfunction for the Hecke operators {Ty, £ [N; Uy, £|N; (d)}; the eigenvalues
are given in Theorem 3.17. Such an Eisenstein series will be called a new Eisen-
stein series of level N. The space of Eisenstein series of weight k for I';(N) is
spanned by the new Eisenstein series E(a, 3) of all levels N'|N together with their
push-ups under the natural degeneracy maps to level N. In particular if mg is an
Eisenstein ideal of To then mg = mgy(E(a, 8), p) with cond (a)cond (8) = N'|N.
Let m,: R* — (R/p)* be the natural map and put @ = 7, ¢ a, B =m,0p.
We then have py, = a @ Bx*~! where x is the p-cyclotomic character. Hence
one direction of Conjecture 3.22 is clear — Eisenstein maximal ideals are always
reducible. To classify reducible ideals we adopt the following notation:

Definition 3.24: Suppose o« and [ are Dirichlet characters with
cond (a)cond (3)|N. For an integer M define the ideals
I(e, B) (M) =(T; — (a(f) + €71 B(¢))  for £ JMN;
Ue — (a(6) + £716(¢))  for €N, £ fM; (d) —e(d)) C T
I(a, B)g(M) =(Te — (a(€) — £571B(€))  for £ JMN; (d) —e(d)) C Ty,
I(a, (M) =1(a, B) (M) N'T,
I(a, B)o(M) =I(a, B)o(M) N To.
Furthermore we set I(a,8) = I(e, B)(1), I(a,B)y = I(e,B)o(1), I(a,B) =
I(a, B)(1), and lastly I(a, 8), = I{a, B)4(1).
We can immediately say the following about reducible ideals.
PrOPOSITION 3.25: Let T be the weight k Hecke algebra for T'1(N) and let
m C T be a reducible ideal of residue characteristic p with mp = m N Tp.
Suppose pm = @ ® Bx* !, where x is the cyclotomic character at p. Let p be
a prime of R of residue characteristic p and o, §: Gal(Q/Q) — R* C CX

Dirichlet characters such that @ = 7, 0 a, 8= Ty 0 0.

(1) I{a, B)(p)o € mo.

(2) Suppose p > k and p {N. Then p feond (a)cond (8) and I{a, 8), C my.
Proof: The representation pm occurs in Hp, (Y1(N)g, 9p)[m]V. Hence (1)
follows from the Eichler-Shimura relations. For (2) the crystalline theory is
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required. Specifically recall the definition T = Fj, + (p) F;;, where F,, denotes
Frobenius and F;f is its adjoint with respect to the inner product. Hence from
the representation pm we see that T;™° = a(p) + B(p)p*~!. But then T;W* is
associated to TZ‘;‘t as in Theorem 1.2, (2). Hence T, — (a(p) + B(p)p*~!) € mT,
concluding the proof of the proposition. |

Hence for a reducible ideal m in the weight k& Hecke algebra T for '\ (N) what
is unknown are the residue characteristic and the eigenvalues of the U, mod m.
If N = ¢¢N’ with (N',£) = 1, then relating the eigenvalue of U, to Eisenstein
series is a study of bad reduction. We are able to execute this program in two
important cases. The first is the case when e = 1 and the Nebentypus character
is trivial. This is the case of semi-stable reduction at £ where Picard-Lefschetz
theory can be invoked. The second is the case of a Nebentypus character which
is very ramified at ¢. Here the Good Reduction Theorem of Katz—Mazur [11] can
be applied. In the next two subsections we take up the analysis of these cases of
bad reduction.

Note that to classify reducible modular Galois representations associated to
cusp forms it suffices to classify those which are new. When analyzing the eigen-
values of U, associated to a reducible ideal m C T and a prime of bad reduction
¢ we will systematically work under the simplifying assumption that mgy C Ty is

new. If m is new at NV, it is an open problem to classify all extensions to levels
N’ with N|N'.

3.3 GEOMETRY mod{: THE CASE e > 1. Suppose N = ¢¢ - N’ with
(N’,€) = 1. For our purposes the best integral model of Y (N) for studying
the bad reduction arises from YP*(V) /Z¢y» the moduli scheme for balanced
[';(N)-structures. A balanced I'y(N)-structure on an elliptic curve E/S with §

any scheme is a diagrarn
—
I »E i E ;Qv

where E’ is an elliptic curve over S, 7 is an N-isogeny with dual isogeny =,
and P, Q are Drinfeld bases of Ker m, Ker 7! respectively. The curve XP*(N) is
geometrically reducible but connected over Z. The diamond operators { ) x { )
which we shall shortly define then operate semi-linearly on Xp*(N),z(¢,; since
they exchange the (x’s. The curve XP?/(N) () is reducible; any component is
then a model of X;(N) over Z[(n].
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We recall results of Katz—Mazur [11] concerning Y"*(N) z(¢,] and its special
fiber X, in characteristic £. As notation, let F, denote a Frobenius element at
¢ and for a natural number m write E(™) for the image of the elliptic curve E
under F;*. For g + h = e, denote by C,n the Igusa curve classifying elliptic
curves £ endowed with I';(IN')-level structure together with a generator W of
Ker(V;***®")y ¢ pmax(9.h) The special fiber

. X
U (zefemnteiiz,)” x cqp,
g+h=e
with all the irreducible components Cy » meeting at the supersingular points. The
geometric special fiber X5 is then the union of geometric Igusa curves 59;,1 =
Cy.n X Fy. Let V; denote Verschiebung at £. The map

. X
(42) Cgn ¥ <Z;g/€"““(g‘h)Zg> — X, is defined as follows:

If g > h, (E,W,u) — isogenies with Drinfeld generators P,Q:

Vg Fh _h
E9W —~+E+EW P=W,Q=1u- -V (W) and dual
EQ) < E~*—E®W P=V/T"W,Q =u-W.
There is an action of (Z/NZ)* x (Z/NZ)* on XP*(N) by letting (a,b) send
the data P; E _‘—j E';Q to aP;E :¢ E';bQ . The action of {a,a™!) is simply
the diamond action (a) on X;(N). And the action of (1,b) is via (Z/NZ)* =

Gal (Q(un)/@Q). This is because the usual model of Y;(N)/Q is obtained by
dividing Y{"*(N)g(uy) by the action of (1, b) . Then

Yi(N) /g @ Q@ = Y7 (V) jg(un) Dogun) @-

If 0 € Gal(Q/Q) acts on the second factor of the first tensor product, it cor-
responds to (1, b) ®g(uy) @ on the second factor (if olg(.,) = b). Hence on
fibers over Iy, inertia at £ acts via (1, b). Generally the action of (a,b) corre-
sponds to P — aP,u > baluif g > hand P+ bP,u s ba"luif h > g. In
particular the (g, h, u)-component of X is stabilized by the subgroup K(g,h) =
{(a,b)| ab=! = 1 mod £™in(9:M}, Let Xy, x2: (Z/NZ)* x (Z/NZ)* — (Z/NZ)*
denote projection onto the first and second factors, respectively. Set

x1(K(g,h))mode? ifg>h | _ max(g, «
(43) Im (K (g, 1)) = { X80 M modll Bo2 0 b g pemesoniz .
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Then K (g, h) acts on a component Cy p, of X through Im A'(g, h).

Let ¢: E — Y1(N) be the universal elliptic curve with compactification
¢: E — X(N). Fix a prime fN and recall the notation (for & > 0) ¥, =
9,(k) = Symm*~2R1¢, Z,. The restrictions of the sheaf 9,(k) to the various
components of X, will still be denoted by v,(k). Denote by X§‘d the ordinary

locus of the geometric special fiber X5. Note that

HMXe, 9,(k)) — H'(X5,9,(k)) is surjective and
- —ord .
H!l(‘xgrdaﬁp(k‘)) =11 H!l(C Up(k)) © Map ((Zi/fmm(g’h)zz)x 7Z£) .
(44)

g+h=e ‘g.ho
By Vanishing Cycle Theory there is an injection

(45) HY (X5,0,(k)) — H'(X7,9,(k)).

The Good Reduction Theorem of Katz—Mazur [11, Theorem 14.5.1] (adding
auxiliary level} asserts that {45) is surjective on the e-eigenspaces for the ac-
tion of the diamond operators if cond ¢(¢) > e/2.

Now suppose 0 # =z € H,I(Z;;f:, Up(k)) is a cohomology class which transforms
under (e,a~!) via ¢ and under (1,b) via a~!(b). Then generally z transforms

under (a, b} via £{a)/a(ab). From the preceding discussion we see that

If ¢ > h, then
(1, ) operates trivially if b = 1 mod ¢ implying o = 1 on 1+ £"Z,.
{a,a™') operates trivially if a = 1 mod ¢9 implying e = 1 on 1 + £9Z,.

If h > g, then
(a, 1) operates trivially if « = 1 mod ¢¢ implying ¢ = v on 1 + ¢9Z,.
{a,a™!) operates trivially if a = 1 mod ¢* implying ¢ = 1 on 1 + ¢*Z,.

From this we deduce the following:

—ord

PROPOSITION 3.26: Suppose 0 # = € H!(C, ,0,(k)) is a cohomology class
which transforms under {a,a™') via ¢ and under (1,b) via a=*(b). Then ¢ and
o are characters mod ¢™**(@:)  Furthermore, if ¢ > h, then « is trivial on
1+ ¢minlgR)g, If h > g, then ea™! is trivial on 1 4 ¢min(e:h) 7,

Finally we need several facts concerning the correspondence U,.
46: The correspondence U, on X is determined by its action on the ordinary

locus. There applying the modular definition as, for example, in [18, Corollary
8.4] we see that:
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On C.p, Up = Fy + maps into Ce_14 , u € (Z/0Z)*.
On CO,e ,Ug = Fet = Ver.

Hence if ¢ is primitive there are two cases for U,.

47: If € is not primitive at £, then by the modular definition of U, it is a

projection operator from level N = £¢ to level £¢~! (assuming e > 1).

Hence for new representations if € is not primitive then U, = 0.
We are now in a position to analyze maximal ideals in the Hecke algebra such
that the corresponding Galois representation is reducible. So let

T = Z(Ty, £ JN;Uq, £|N;(d),d € (Z/NZ)*)

be the weight k Hecke algebra for I'; (V) and suppose m C T is an ideal of
residue characteristic p with (d) — e(d) € mT’ such that pn, is reducible, say
pm = a @ Bx*~! with x as usual the p-cyclotomic character. By the crystalline
theory (Proposition 2.3) the characters a and 8 of Gal (Q/Q) are unramified at
pifp> k.

As previously we let ¥, = ¥,(k) denote the torsion sheaf ¥,(k)/pd,(k) on
X1(N). Then the T[Gal (Q/Q)]-module H!(X,3,(k))¥[m] has a Jordan-Hélder
filtration with all constituents equal to constituents of py,. In particular there
is a cohomology class 0 # z' € H'(Xz,O,(k))[m] such that the line it gen-
erates is T[Gal (Q,/Q)]- invariant with (d) - 2’ = &(d) - 2’ for d € (Z/NZ)*.
By the Good Reduction Theorem of Katz—Mazur 2’ arises from a class 0 #
2" € HY(Xz,9,(k))[m] if cond o(¢) > /2. But H}(X2™,9,(k)) surjects onto
H'(X3,3,(k)) by (42). Then the Hecke eigenvalues and Galois representations
lift.

PROPOSITION 3.27: Suppose p > k, € is primitive at ¢, and pp, = a ® Bx*~ L.
Then af8 = €, a or 3 is unramified at £, and U, = Trace of F; on the unramified
part.

Proof: Recall that H! corresponds to the dual of py,. By 3.26 and 46 we see
that if ¢ is primitive then either
1. g =e, h =0, a is trivial on inertia at ¢, and U, = a(¢) or
2. g=0,h=c¢, a=c¢ on inertia, and U, = £*"}(ea~')(¢). This establishes
the proposition. 1

Note that if € is primitive then any m is new. We now take up the case of

non-primitive €.
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PROPOSITION 3.28: Let the level N = ¢¢N' with ({,N') = 1, e > 1. Suppose
p > k, ¢ is not primitive at £, and m C T is new. Then U, € m. Moreover

ife > conde(e) > e/2 > 1 and pm = a @ Bx*™1 occurs in cusp forms of type
(N, k,¢), then e > cond s{a) + cond ((5).

Proof: The assertion is just a restatement of the fact (47) and the discussion

preceding Proposition 3.26. |

3.4 SEMI-STABLE REDUCTION AT £: THE CASEe =1. Let { be aprime, N =
¢N' with (N, €) = 1, and ¢ be a Dirichlet character defined on (Z/N'Z)*. Denote
by T the Hecke algebra for Si(To(N),£)—T 1is the Z-subalgebra of
End¢ (Sk(To(N),e)) generated by T, v AN ; U, 7|N; and (d), d € (Z/NZ)*.
Suppose m C T is a new maximal ideal of residue characteristic p with p > k,
{p, N) = 1 such that the representation py, is reducible. The crystalline theory
(Proposition 2.3) shows that py, = a @ Bx*~! where ¥ is the p-cyclotomic char-
acter and € = a3. Moreover the characters a and 3 are unramified outside N;
in particular they are unramified at p. As usual, for r JN the Eichler-Shimura

relation gives:
(48) T, — (a(r) + B(r)r*™') € mT,

where T" = T ® R. Also the crystalline site gives us as usual that
(49) T, - (a(p) + B(p)p*~") € mT".

The purpose of this subsection is to examine the action of U, in this case of
semi-stable reduction. To study U, we consider the bad reduction at £ of Xo(N).
The special fiber of Xo(N)/Z consists of two copies of Xo(N')/Fe. Recall that
¢: E — Yo(N) is the universal elliptic curve and 9,(k) = Symm*~%(R'¢,Z,).
In general suppose F is a Z, sheaf on X (N) and 7: (Z/NZ)* — O* is a
character. Then we define F, to be the largest subsheaf of F ®z, O where
(d) acts via 7(d) for d € (Z/NZ)*. Let m: X;(N) — Xo(N) be the natural
projection. We then set F(7) equal to the sheaf m.(F,) on Xo(N). Now we
apply this construction to the sheaf ¥,(k). View the character ¢ as taking values
in an extension O of Z,. Then we have the sheaf ¥,(k)(¢) on Xo(N). Since ¢
has no component at £, the sheaf ¥,(k) has “good reduction” at £. So Picard-
Lefschetz theory tells us that the action of inertia at £ is given by the local



44 G. FALTINGS AND B. W. JORDAN Isr. J. Math.

contribution at the double points ¥. Specifically we have the maps
(50)  Hi(Xo(N) @ Fe,0,(k)(e)) — HY(Xo(N)®Fe,9p(k)(e))
—  HY(Xo(N) ® Qp, 9p(k)(€)).
Let I, C Gal (Q,/Q;) denote the inertia subgroup. Then for any o € I,
(51) (0 — )HY(Xo(N) ® Qq,9,(k)(e)) is contained in
Image (Hg(Xo(N) ® Fe, Up(k)(€)) — H' (Xo(NV) ® Q¢, 9,(k)(¢))) -

PROPOSITION 3.29:

(1) Ifo € Iy, then (0 — 1)2 = 0 on HY(Xo(N) ® Qq, 9,(k)(¢)).

(2) Foro € Iy, (60— 1)HY(Xo(N)®Qq, 9p(k)(g)) € HY(Xo(N) xQq, 9p(k)(e)) .
Proof: Obviously (2) is simply a reformulation of (1). The assertion follows

from SGA 7, exp. 15. There it is stated only for constant coefficients. However

the proof applies verbatim to the case of locally constant coefficients. 1

In particular inertia at ¢ acts unipotently so on a one-dimensional space it must
operate trivially. It follows that the characters o and 3 are unramified at ¢.
Now observe that

(52) Hy(Xo(N) ® Fe, 9p(k)(e))
>3 (F({f}, 9,(k)(€)) ®zp Hipy (Xo(N) @ F, Z,,)) .
T€Y
This decomposition makes it easy to see the action of the arithemetic Frobenius
Frobg = Fy. The morphism Frob, acts on I'(Z, 9,,(k)(¢)) as we. To determine its

action on H(Xo(N)®F,,Z,), it suffices to consider the local picture of a double
point. Let then X be two lines crossing at a point Q. Then

H,(X, Zp) = Coker (T(X - Q),Z,) — I'(X,Zp)).

Now I'( X - Q),Z,) & Zf, and I'(X,Z,) = Z,. The quotient is one-dimensional,
generated by one component or minus the other. So switching the components
at the double point acts as —1. But w, acts on Xo(N) ® F, by switching the
crossing components at each point of ¥. Hence w acts on H&(Xo(N) ® Fy, Z,)
as —1. Hence we have the theorem:

THEOREM 3.30:
(1) Fy acts on HE(Xo(N) @ Fe, 9,(k)(¢)) as —w;*.

(2) Fo = —w;' on (0 — DVH'(Xo(N) x Qg 9,(k)(e)) © H'(Xo(N) ® Qo
9,(k) (€)™ for any o € I.
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We remark that for the case e = 1 we have that U, + w, is a projector to

lower level. Hence since m is new U, = —w, on H;ar(Yo(N),—ﬁp(s))[m] where
9, = 0,(k)/pOp(k). The eigenvalues of F, ' acting on H]..(Yo(N), 9,(¢))[m] are
a(€)f*=* and B(¢). Since F; ' = U on (0 — 1)H],(Yo(N), 9p(¢))[m] we deduce:

PROPOSITION 3.31: The scalar by which U, acts on HFl,ar(Yg(N),ap(e))[m] is
one of {a({), B(£)¢k~1}.

Note that since py, = a @ 3x*~! we have that ky, is generated by the values
of a and 8. Thus k,,, C R/p.

Since U2 = w? = €*~2a3(¢), there are two cases:
(53) (i) ¥ Us=a(¥), then £*~2 = a/B(¢) mod p.
(54) (ii) If U;=B(£)¢*~1, then ¢F = a/B(¢) mod p.

Assume that k& > 2 for simplicity and set
(55) E(a, 8 0)1=a(0) E(a, B) — weE(a, B),
(56) E(a, B; 0)2=B(0)¢* 1 E(a, ) — weE(e, ).
For 1 = 1,2 the Eisenstein series E’(a, B3;£); are defined whenever

(£, Nog < cond (e)cond (8)) = 1

and are modular forms of level N, g. They are eigenfunctions of the restricted
Hecke algebra Ty with the same eigenvalues as E(a, 3). Use the formulae w, +
Up = T; and Upw, = €*"1a3(£) to compute

(57) (i) UeE(ar, B; )1=a(t)E(a, 5 01,

(58) (i) UoB(a, B; 0)2=B()¢* 1 E(ex, B; £)2.

We now normalize the E(a,ﬁ; £);, 1 = 1,2. Observe that since E(a, ) has
level N, s which is prime to ¢, we have

(59) weB(a, B) = m; E(a, B) = 05 'Vo E(a, B),

using the notation and results of Proposition 3.13 for the covering 7, X1(Na 5f)
— X1(Nap). Hence the g-expansion of weE{a, ) at oo has a; = 0. We
therefore set

(60) E(o, 5; enza%é(a, B: ),

1 -
(61) E(a, B f)zmeE(aﬁ; £)s.
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Then for ¢ = 1,2 E(a, 8;£); is normalized, i.e., its g-expansion at oo has a; = 1.
It is an eigenfunction of the Hecke algebra Ty and also an eigenfunction of U,
with eigenvalues given in equation (57). Hence we have constructed Eisenstein
series which give packages of Hecke eigenvalues corresponding the the possibilities
of Proposition 3.31.

3.5 REDUCIBLE m C T ARE EISENSTEIN. We retain our previous nota-
tion; in particular T denotes the weight k Hecke algbra for I'y(N), R is the
finite extension of Z generated by the Nth roots of 1 together with the values
of all Dirichlet characters of conductor dividing N, and T/ = T ® R. Sup-
pose m C T is a new reducible maximal ideal of residue characteristic p > k,
p /N associated to a cusp form of type (k, N,¢). We suppose pm = @ ® By*!
where x is the p-cyclotomic character. By the crystalline theory @ and 3 are
unramified at p. Let cond (@), cond (3) be the Artin conductors of @, 3 (defined
as products of local factors over all places except p). By Carayol [2] or Livné
[13], Nz 5 = cond (@)cond (B)|N. Let m’ C T be a maximal ideal of T’ lying
over m, i.e. m' N T = m. The ideal p = m’' N R is prime and k,, C R/p. The
natural projection m,: R* — (R/p)* maps the Nth roots of unity uy € R*
isomorphically onto pny C (R/p)*. Set i = m jun. Define liftings of @ and B to
Dirichlet characters by setting o = i~ 'o@, 3 = i~ 1o8. Then cond (a) = cond (@)
and cond (8) = cond (8), 50 Na g = N 5IN.

The eigenvalues of T, modm, ¢ [N, and (d) mod m are known (cf. Proposition
3.25); namely I(a, 8), € mg. Suppose ¢ is a prime and N = {*N’ with e > 1
and (N',¢) = 1. Set T = TQ® Z[e, 8], Ty = T ® Z[a, 8], myg = mgTy, and
m’ = mT’'. The previous two sections determine the eigenvalues of U, modm,

which we restate here for convenience.

THEOREM 3.32:
(1) If ¢ is primitive at ¢, then Uy — (a(€) + B(£)¢*~!) € m and one of a, B is
unramified at £.
(2) If ¢ is not primitive at £ and e > 1, then Uy € m. Ifconde(e) > e/22>1,
then e > cond p(a) + cond ¢(8).
(3) If ¢ is not primitive at £ and e = 1, then a and 3 are unramified at £ and
either Uy — a(€) € m or Uy — B(€)¢*~! € m.
We now show that in any of the above cases we can construct an Eisenstein
series with this package of eigenvalues. The Eisenstein series we take will be
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a modification of the Eisenstein series F{a,3). Define operators A, for ¢|N
according to the cases of Theorem 3.32 as follows:

CAsE 1:  Suppose ¢ is primitive at £. Then set A, = 1. Note that in this case
cond ¢(a) + cond ((3) = e.

CASE 2: Suppose ¢ is not primitive at £ and e > 1. If both a and 3 are ramified
at ¢, set Ay = 1. If one of o or 3 is unramified at £, then cond ¢{(a)+cond ({3} < e.
In this case set Ay, = 1~ V,U,.

CASE 3:  Suppose ¢ is not primitive at £ and e = 1. If Uy — o(f) € m, set

_ a(@) + we
A=
If U — B(€)€*! € m, set
B! — w,
AN =—"F——
B(e)e-1
Now consider the Eisenstein series
(62) E = (TgnAe)Ea, B),

and let E be the scalar multiple of £ which is normalized. If E has g-expansion
at oo given by E(00)(q) = Y nroan(E)g™ then a1(E) = 1, T,E = a(E)E for
primes ¢ fN, U,E = a,(E)E for primes ¢|N, and (d)E = ¢(d)E. Moreover, we
have that

(Te — ae(E), € IN;Up — ao(E), €|N; (d)) C m'.

Let f be the normalized cusp form with coefficients in k = T/m associated to
m. Then f — E has g-expansion at co equal to a constant. We deduce cases
where this constant must be 0, and hence where Emod g is a cusp form, from
the following lemma.

LeMMA 3.33: Suppose f =1 is the g-expansion about a multiplicative cusp of
a modular form mod p of weight k on I'y(N), (N,p) = 1. Then p — 1 divides k.

Proof: There are two natural “degeneracy” maps for a prime ¢, namely B, By:
Yy (N{) — Yy(N). The map Bj is defined in terms of moduli as (E, z) — (E, £z),
where z is a point of the elliptic curve F of exact order Nf¢. This is the usual

forgetful map and corresponds to the map on the Poincaré upper half plane given
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by z + z. The map B, is defined in terms of moduli as (E, z) — (E/{¢x),Z) and
corresponds to the map z — €z on the Poincaré upper half plane.

There are two cusps of Yo(N¢) lying above the multiplictive cusp of Yp(NV)
about which f has the g-expansion equal to the constant 1. One of the cusps will
be étale at £ and the other will be multiplicative at . It is easily seen that B} (f)
has g-expansion about both these cusps of Yo(N¢) equal to 1, whereas Bj(f)
has g-expansion about the ¢-multiplicative cusp of £* and g-expansion about the
£-étale cusp equal to 1.

Under the assumption £ = 1mod N we then must have B;(f) = B} (f) =
¢*B1(f), so £ = 1modp. Since this holds for all £ = 1mod N and (¢, N) = 1,
this means that (p — 1)|k. [ |

The Eisenstein series classically denoted E,_; of weight p — 1 on SL(2,Z)
has g-expansion congruent to 1 modp, showing that the g-expansion about a
multiplicative cusp f = 1 does indeed arise when the weight k is divisible by
p—1.

We now compute the constant term of E. For primes £ in Case 3 above, we

use the following.

PROPOSITION 3.34: Suppose N = {N' with (N',f) = 1. Let g be a modular
form of weight k and level N’, so weg has level N.
(1) The modular form (a(f) — w,)g has constant term a(£)(1 — €¥~)ao(g;c) at
an ¢-multiplicative cusp ¢, a(£)(1 — 1/8)ao(g;c) at an £-étale cusp c.
(2) The modular form (B(£)€*~* — we)g has constant term 0 at an ¢-multi-
plicative cusp, (£¥=13(£) — a(€)/€)ao(g; c) at an {-étale cusp c.
Analyzing the effect of primes ¢ in Case 2 is more laborious. We will proceed

via a series of propositions.

PROPOSITION 3.35: Let f € Mi(T1(N)) with N = ¢*N’ for { a prime,
a > 1, and ({,N'} = 1. Suppose R is a Dedekind domain such that ag(f) €
R|orientedcuspsof X1(N))| is primitive. Assume that there exists an integer 0 <
b < a such that ap(f;c) = 0 if ¢ is an oriented cusp of X,1(N) with N.(c) =
¢°N!(c) with (¢,N!(c)) = 1. Then for any unit A € R*, ao((r] — A1})f) €
Rjoriented cusps of X1(N¢)) is primitive.

Proof: For a cusp é of X;(N?¢), routine computation shows that:

It 4|NL(8), No(m&) = No(8)/€. IE£ fN.(E), No(mé) = No(&).
If EINm(EL Ne('frlé) = NE(E) If ¢ /{/Nm(é)i Ne(ﬂ'le) = Ne(é)/g
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Let o be a prime of R and suppose ag(F) # 0. By hypothesis one of the
following two cases holds.

Case 1. There is an oriented cusp ¢ = ((,1/N.(c}) with
ao(fic) # 0modp, ve(Nin(e)) > 1,
and ag(f;¢’) = 0mod p for all ¢ with
ve(Ne(e)) = ve(Ne(c)) = L.
Case 2. There is an oriented cusp ¢ = (¢, /N, (c)) with
ao(fic) # 0modp, ve(Nm(c)) > 1,
and ag(f;¢') = 0mod g for alt ¢/ with
ve(Ne(c')) — ve(Ne(c)) = 1.

In Case 1, consider the cusp ¢ = (¢1/¢,i/N.(c)). Then m¢(¢) = ¢ and N,(m&) =

N(¢)/f = Ne(c)/€. Hence
ao({m] — ATg) f16) = ao(f3 ) — Aao(my f3¢)
= ag(f;8) — Aao(f1(me)«€) = —Aap(f; c) mod p.

In Case 2, consider the cusp ¢ = (¢¥/¢i/¢N.(c)). Then m(¢) = ¢ and

Ne(me¢) = Ne(é) = Ne(c) + 1. Hence
ao((m] — Amg) f1¢) = ao(fi¢) — Aao(my f3€)
= ag(f;¢) — Aao(f; (me)«€) = ao(f;¢) mod p.

So in either case ao((77 — An})f) # 0mod g for each prime @ and lattice element
ao((n] — An;)f) € R|oriented cusps of X1(N?)]
is primitive. |

PROPOSITION 3.36: Let o and 3 be Dirichlet characters of conductors cond ()
and cond () respectively. Suppose Nop = cond (a)cond (8) = ¢*N/, ; for £ a
prime, a > 1, and (¢, N, 5) = 1. If a is unramified at ¢, then ao(E(a,8);¢) =0
for any oriented cusp ¢ of X{(Ng,g) with v¢(N,,(c)) = 0. If 3 is unramified at ¢,
then ag(E(a, 8);¢) = 0 for any oriented cusp ¢ of X1(Na,g) with vo(Ne(c)) = 0.
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Proof: We recall the notation of Definition 3.16 . We factor Ny g = ST’ where
cond ¢(83) > cond ;(a) if £]S” and cond ¢(e) > cond ¢(3) if £|T’'. Moreover we set
S = cond (8s) and T = cond (a7+). Then w¢,E(af™',1) is a modular form of
level ST'. Also from Proposition 3.11 we have
(i) If €]S, ao(wes E(aB™1,1);¢') = 0 for any oriented cusp ¢’ of X;(ST) with
ve(Nun(€)) = 0. |
(ii) If 6T, ao(wes E(aB™,1);¢') = 0 for any oriented cusp ¢’ of X{(ST) with
ve(No(e)) = 0.
Suppose in general that E is a Tate curve and z is a point of E of exact order
N. Let A: (E,z) — (Ex,z)) be an isogeny of degree prime to N. Then z) is of
exact order N and N.(z)) = Nc(z). Now

E(a,B) = X(<>t—ﬁ1‘1TS—)“’CSE(aﬁ_l, 1) ® as Br
and ¢ 1 cond (ag )cond (B7+) by the hypothesis that a or § is unramified at
¢. Hence from the definition of twisting (3.16) we see that for any oriented
cusp ¢ on X1(Nag), ap(E(a, 3);c) is a linear combination of terms of the form
ao(wes E(af™1,1); ¢) with ¢ a cusp of X;(ST) satisfying ve(Ne(c')) = ve(Ne(c))-
Hence the proposition follows from (i), (ii) above. |

PROPOSITION 3.37: Let a and 8 be Dirichlet characters of conductors cond (o),
cond () respectively. Suppose that the prime ¢ divides cond (a)cond (8) =
N, and one of a or 3 is unramified at £. Then ao(1 — VoU,)E(a, B))
L(1 — k,a™'B) - v, where v is a primitive vector in the lattice Z([1/N4,g, o, (3]
[oriented cusps of X1(Na,g?)].

Proof: By Theorem 3.17,
UeE(a, B) = ME(a, ) with Ay = a(€) + B(€)¢F1.

Asa(f) = 0or B(¢) = 0, it follows that A, is a unit in the ring R = Z[1/N, g, o, B].
Now
(1= VeUn)E(a, B) = (m} = Xt~ * "D E(ex, B),

cf. Proposition 3.13 . The lattice element

(1/L(1 — k,a™'B))ao(E(a, B)) € R|oriented cusps of X1(Na,g)]
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is primitive by Theorem 3.20 . Hence from Propositions 3.35 and 3.36 we deduce
that

ao((1 = VeUo) E(e, B)) = L(1 ~ k, @™ ') v
where v is a primitive vector in the lattice R[oriented cusps of X1(N gf)]. ]

Putting all this together we can therefore settle the following case of Conjecture
3.22:

THEOREM 3.38: Let T be the weight k Hecke algebra for I'1(N). Suppose
m C T is a new reducible maximal ideal of residue characteristic p withp > k+1,
p IN. Then m is Eisenstein (of level N).

Proof: Suppose pm = @ P Bx*~!, where x is the p-cyclotomic character. Con-

struct Dirichlet characters o, 3: Gal(Q/Q) — R* C C* as in the beginning
of Section 3.5 such that amodgp = @, Bmodp = 3 for a fixed prime ideal p
of R lying above p. Let E be the Eisenstein series obtained by normalizing E
as in equation (62). Then if E = 3>  anq¢™, we have T,E = a,E for £ /N,
U¢E = a¢F for {|N, and (d)E = ¢(d)E. For a prime ¢|N, set

Ar =£—1if Uymodm = &(),
e =08 — (a/B)(¢) if Uymodm = B(£)¢*1.

By Propositions 3.34-3.37 we have that
ao(E) = L(1 — k, o™ ')y nAe - v,
where v is a primitive vector in R{1/N][oriented cusps of X;(N)]. Hence
m’ = (T, — a, for primes ¢ [N, U, — a; for primes £|N;{d) — e(d),p) C T’

lies above m C T with the prime p dividing L(1 — k, a—lﬁ)HgHN/\[. Hence m is
Eisenstein. [ |

4. Multiplicity One for Eisenstein ideals

Let N be a positive integer and denote by T the weight k Hecke algebra for
[o(N), k> 2. So T is generated over Z by Ty, ¢ JN; U, £|N. Suppose m C T is
a maximal ideal with residue field k = T/m of finite characteristic p > k prime to
N. We retain our previous notation that ¢: E —» Y3(/V) is the universal elliptic
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curve, ¥, = Symm *~2(R'¢,Z,), and 9, = 9,,/p9,. We have seen in Theorem 2.1
that if py, is irreducible then dimy H!(Yg(N oy 9,)[m] = 2. In fact in this case
HY(Yo(N)g 9,)[m] is isomorphic to the k[Gal (Q/Q)}-module corresponding to
pyr- In this chapter we study the analogous question when pn, is reducible. If
pm = a @ 3 for characters a and 3, then all constituents of the k[Gal (Q/Q)]-
module H(Yp(N o ¥,)[m)] are isomorphic to a~! or 3. More generally this is
true for the m-primary submodule H,_ (Yo(N Jrox 9,){(m) of H (Yo(N g 9,).
We shall examine the case when N is a prime. If p,, = o ® (8 then we know that
{a, 8} = {xo = trivial , x*~1}, where x is the p-cyclotomic character. Let us
assume that o = yg and 8 = x*~ 1.

We first study the possible extensions annihilated by p
0—x1—>¢—x2—0,

where x1, x2 = a or 3, which satisfy the local requirements necessary to be a

subquotient of the new part of H, (Yo(N Jroy 9,)V. The local requirements are:

1. At a prime £ # p, N the extension 0 — y; —= ® —= x3 — (0 must be
unramified.

2. The extension 0 —= x; —» ® —» x2 — 0 of Gal(Q,/Q,)-modules is
crystalline.

3. By Theorem 3.30, a Frobenius element Fy acts on
{{c =)z |z € o, o an element of inertia at N}

(i.e., the smallest submodule of e such that the quotient is unramified)
as —Nwy. This shift occurs because subobjects correspond to quotients
under duality. In general therefore if 0 — x; — ® — o — 0 ramifies
at N, then

x1(N) = =N"lwy modm and x3(N) = —~wy modm.

On the N-new part wy = —Uy since Ty = wy + Uy is a projection to the
N-old part. Hence we can express the above equations in terms of Uy as

x1(N)= N"'Uymodm and x2(N)= Uy modm.

A key ingredient in our study of such extensions will be the computation of
certain Ext groups:
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PROPOSITION 4.1: Denote by Ext’ crystalline extensions annihilated by p. Let
0<4,j <p-—2 and let F,(i) be the Tate twist corresponding to x".
1. Over Q,,

Exti (Fp(i), Fp(j))=0 ifi—j>0
Extp (B, (i), Fp(j))=F, ifi-j<0.

2. Over Qp™,

EXt&‘p(Fp(iLFp(j)) 0 ifi—-j2>0
Ext%p(Fp(i),Fp(j))%"Fp ifi—3<0.

Proof: Let F,{i} be the crystalline object corresponding (in a contravariant
manner) to the Tate twist F, (7). The underlying module of F, {1} is just F,, with
filtration given by F'(F,{i}) = F,{i}, F"TY(F,{i}) = (0), and ¢*(1) = 1. We
then have

Extf (F, (i), B, (§)) & Hom(F, {5}, E, {~i})/(1 ~ ¢°) F* Hom(F, {5}, F, {~i}).

Moreover Hom(F,{i}, Fp{j}) = Fp{i—j}. If M = F,{k}, then for k¥ < 0 we have
FOM = 0 while for k > 0 we have FO(M) = M, ©° = 0. Over Q™ the situation

is similar except that 1 — ¢° becomes surjective. |

We proceed to analyze the the various possibilities for 0 — x; —> ¢ —»
xz — O

Casel. 0—a—0¢—a—10

There are no nontrivial crystalline extensions of F,, by F,, annihilated by p (cf.
Proposition 4.1). Equivalently if I C Gal (@p /@, ) denotes the inertia subgroup
then such an extension of I-modules is split. By 3) of the local requirements
above we see that if the extension is ramified at N then N = Uy modm and

Uy =1modm, so N = 1modp.
Case2. 0—>fB3—>0—>[3—0

Again let I C Gal(Q,/Q,) denote the inertia subgroup. The extension of I-
modules is split at p since the crystalline Ext ,F,,(Fp(k - 1), F,(k - 1)) = 0 over
Q™. Deduce from 3) of the local requirements that if the extension is ramified
at N then N* = Uy modm and Uy = N*" modm, so N = 1 modp.

Case3. O0—>a—0¢—[F—90
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As before the extension of I-modules is split at p since the crystalline
Extg (Fp(k—1), F,) = 0 over Q5. We see from (3) above that if the extension is
ramified at N then Uy = N modm and N*~! = Uy modm, so N*~2 = 1 modp.

Cased. 00— f[F—r0e—>a—>0

The crystalline Ext ﬁ?, (Fp, Fp(k — 1)) = F, over Qo™. Locally at N we see
from 3) above that if the extension is ramified at N then N* = Uy = 1 modm,
so N* = 1 modp.

The global implications of these local results are as follows:

PROPOSITION 4.2:  For x1, x2 € {a, 8}, denote by I:D.E(Xl, X2) the group of
extensions of g by x1 satisfving the local requirements above.

Let C denote the class group of Q((,) and set A = C/pC. For a character 1
of Gal (Q(Cp)/Q), A¥ is the subgroup of A on which Gal(Q({,)/Q) acts via 1.
All such characters 1 are powers of the Teichmiiller character w.

(1) If N # 1modp, then Exvt(a, o) = E}R(ﬁ, B8)=0.

(2) dimg, (Ext(8, a)) < 1+ ord, |A¥|, where ¢ = w*~!, with equality only if

N = Uymodm and N*~2 = 1 modp.

(3) If Uy #Z 1 modm, then

dimg, (Ext (a, B)) < 1+ ord|AY|, where ¢ = w'™*.
P
Proof: There is a natural equivalence of data between extensions
E;O——-»Xi—>o——>xj——>0

of Gal(Q/Q)-modules annihilated by p and Gal(Q(¢,)/Q)-equivariant homo-
morphisms

p = p(E): Gal (@/Q(Cp)) — Hom(F, (j), F, (1)) = Fy (i — j).

The splitting field over Q((,) of an extension E is the extension Q(¢p)(p(E))
cut out by p(F). We first consider extensions E in E)\(E(a, a) and E;t(ﬁ, B).
If N # 1modp, then by Case 1 and Case 2 the extension Q(({,)(p(E)) is an
everywhere unramified extension of Q((,) on which Gal (Q((,)/Q) acts trivially.
But the only such are trivial since the ideal class group of Q is trivial, proving
(1). N

Now consider extensions F in Ext(8, a)). By Case 3, the extension
Q(¢p)(p(E))/Q¢p) is unramified outside N and ramified at N only if N =
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lmodp and Uy = 1modm. The possible E unramified at N correspond to
A by classfield theory. Allowing ramification above N adds at most 1 more
dimension since the tame inertia group is cyclic, thereby proving (2).

Lastly consider extensions F in I*/)E(a, 3)). By Case 4, such extensions are
unramified outside pN. Moreover if N*=2 # 1 modp or Uy # 1 modm, then the
extension F is unramified at N. In this case, restriction to the intertia group
gives a map

Ext (a, 3)) — Bxt} (F,,F,(k—1)) 2 F

P
with Ext’ denoting the crystalline extensions over QU"" annihilated by p as in
» y p

Proposition 4.1. The kernel of this map is the everywhere unramified extensions,
i.e., A"7". This then proves (3). |

As in Proposition 4.2 above, let C denote the class group of Q(¢,), A = C/C?,
and A¥ denote the subgroup of A on which Gal(Q({,)/Q) acts via the character
?. Any such 9 is a power of the Teichmiiller character w. The theorem of
Herbrand-Ribet says that for ¢ = w® with i odd, 2 < i < p~3, AY = 0 if
and only if p JL(0,%~1). Hence the following proposition then follows from
Proposition 4.2,

PROPOSITION 4.3: Let p > k be coprime to the prime number N. Sup-
pose N # 1lmodp and Uy # 1modm. Moreover if 2 < k < p — 1, suppose
p AL(0,w* 1) L(0,wP~F). Then

Ext (@, &) = Ext (8, f) = 0 and dimg, (Ext (8, a)) < 1, dimg, (Ext (a, 8)) < 1.
Next suppose
Ext (a, o) = Ext (8, ) = 0 and dimg, Ext (3, o)) < 1, dimg, Ext (a, 8) < 1.

Set My = a and Ny = §. Inductively suppose that a k[Gal(Q/Q)]-module
N, 1 has been constructed , n > 2, satisfying the necessary local requirements
1,2,3 above to be a subquotient of H;ar(YO(N)@, 9,)V. Then define M, to be a

nontrivial extension
0—a—M,—N,_;—0

if such an extension exists. Similarly suppose inductively that a k[Gal (Q/Q)]-

module M,,_; has been constructed , n > 2, satisfying the local requirements
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above. Define NV, to be a nontrivial extension (if one exists)
0—f38—N, — M, —0.

In this way we construct a family of modules {M;, N;} which possibly terminates
at some point. Obviously if M; does not exist for some ¢ then N; will not exist
for j > t + 1. Hence the index where the M; terminate and the index where the
N; terminate will differ by at most 1. We claim that these modules {M;, N;}
are canonically defined and up to isomorphism independent of all choices. This

will follow from the following computation.

PROPOSITION 4.4: The statements below are taken to be vacuous if a particular
N; or M; does not exist.

(1) dimg, Ext (N, a) < 1, dimg, Ext (M, §) < 1.

(2) Ext(Nn, 8) =0, Ext (M,, a) = 0.
Proof: The long exact sequence arising from 0 — 3 — N,, — M,,_; — 0
yields

0 — Hom(8, 8) —» Ext (M,,_, 8) — Ext (N,,, 8) —= Ext (3, 8) = 0.

As Hom(g, 8) = I, we conclude that

(63) dimg, Ext (Mn_1, 8) = dimg, Ext (N,, 8) + 1.
On the other hand the short exact sequence 0 — o« — M,, — N,_; — 0
yields
0 —» Ext (Nn_1, 8) — Ext (M,,, 8) — Ext (o, 8) — F,.
Hence
(64) dimg, Ext (M, §) < dimg, Ext (Np_1, §) + 1.

From equations (63), (64), and the hypotheses that
Ext (N1, ) = 0 and dimg, Ext (M;, §) <1
we deduce that
dimp, E;(E(Mn, B8) <1 and E/‘;(E(Nn, B3) = 0 for all n.
The remaining pair of statements, viz.

dimg, ﬁE(Nn, a) <1 and E;t(Mn, a) = 0 for all n,
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are proved in an analogous manner. |

The constructed M,, and N,, are indecomposable p-torsion Gal (Q/Q)-modules

with Jordan—Holder series which may be illustrated as:

I¢]

@ and , respectively.
8 «
«@ Is)

We now claim that these are all such indecomposables.

PROPOSITION 4.5: Suppose M is a finite p-torsion Gal (Q/Q)-module all of

whose constituents are isomorphic to o or 3. Then if M satisfies 1), 2), and 3)

M= ((‘P]\[,) D (tPNj).

Proof: We argue by induction on the length of M. The statement is clearly true
for M of length 1—then we must have M = « = M, or M = = N; Assume the
statement is true for length n—1. Such an M of length n must have a submodule
isomorphic to a or J. We suppose we have 0 — a — M -—— M’ — 0, the
case of M containing § being analogous. If M is decomposable, then we are
done by induction. Hence suppose M is indecomposable. By (2) of Proposition
4.4 we must have then M’ = @._, N, which we assume ordered so that
N;
M = M;jy31. So we suppose r > 1. The class ¢ = (¢5);—; of the extension
0 — a — M — M — 0 in Ext(M' = ®Nj),a) = ®Ext (N, a)
satisfies ¢ # 0, 1 < j < r as M is indecomposable. For A € F)' consider the map

a1 € Nj2y € ... € Njy. If 1 = 1 then again we are done since then

i» = (1,A,0,...,0): Ny = @Nj(S)'
s=1

Since dim(}i;(/t (Nj1y,@)) < 1itis possible to choose A so that i} (c) = 0. But then

Nj(1y can be split off of M. This contradiction then establishes the proposition.

With these preparations we now turn our attention to the multiplicity ques-

tion. Let V := H! (Yo(N)g: 9,)(m)V denote the m-primary component of

par

Héar(Yo(N)@, 9,)V. Now V is a T[Gal (Q/Q)}- module all of whose constituents

are a or 8. Hence by Proposition 4.5 V = (&M;) @ (PN;). Note that the
last two steps in any Jordan-Holder filtration of V' are annihilated by m by the
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Eichler-Shimura relations. By Theorem 1.1 we know Multiplicity One for a in
Vim] or for 8 € V/mV. Hence the decomposition of V into a direct sum of
indecomposables must be of the form

(65) VEA®(@3s),

where A & M, or A = N,. Therefore the dual Homg, (V,F,(k — 1)) of V is
A* @ (®a’s). Now HJ, (Yo(N o 9,) is self-dual since Poincaré Duality gives a
perfect pairing

Hpo (Yo(N)g 9p) X Hpar(Yo(N)g, ) — Fp (1~ k).

par par

The Hecke algebra is self-adjoint with respect to this pairing. Moreover T, =
T ® Zp is a complete semi-local ring and hence Ty, is a direct factor: T, =
Tm X T.,. As the action of T is self-adjoint with respect to the auto-duality of
H}, (Yo(N)g, Jp) it follows that V' is self-dual.

Taking the dual reverses the steps in a Jordan-Holder filtration, inter-

!
changing a’s and 3’s as it goes. For example the dual of J¢; is
o
B . :
@ and the dual of is
3 B B
! !

In general, the dual of My, is My, and the dual of Ms,,_; is Ng,_;. Similarly
the dual of Ny, is Ny, and the dual of Ny, is My,_;. Hence if V = A (93’s)
with A = M, or A 2 N, and V is self-dual, then we must have V &2 a & 3,
V = Mg,,or VN,,..

PROPOSITION 4.6: The Galois module V[m] = H}, (Yo(N)g,9,)¥[m] has a =
Xo as a submodule.

Proof: We have the diagram of Gal (Q/Q)-representations

Hpo(Yo(N)g0p) € H' (Yo(N)g9p) — D Z,(1-k)

oriented cusps

which under the étale/crystalline correspondence gives an F*~!-part

Sk € My, =* Z,[oriented cusps|.
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Let I = I(E) C T be the ideal defined by an Eisenstein series E of weight &
for T'o(N). Then the kernel of I on My is Z,, - E. This means that Emodag
defines a class (E) in parabolic cohomology; (E) € Sk/aoSy = FF~1. Using the
correspondence between Galois and crystalline upon reducing to Q™" we have the
injection F, {k — 1} — H{pyg corresponds to F,(1 — k) — Hy,. This injection is
an injection of Gal (Q/Q)-modules (and not just Gal(Q,/Q;)-modules!) because
the kernel of the Eisenstein ideal is a Gal (Q/Q)-module. In turn we obtain a
surjection of Gal (Q/Q)-modules H}, — F,. 1

Since V{m] has « as a submodule this means V = My, or V 2 a s 8. If
V = My, then V[m] must consist of the first two steps of the filtration for any

more would result in at least two o’s. Hence in any case we get an exact sequence
0—a— V[m]—3—0

and dimy Héar(Yo(N )o 9p)[m] = 2. Accumulating all the hypotheses used we
have then the Multiplicity One result below:

THEOREM 4.7: Let N be a prime and T the weight k Hecke algebra for T'o(N).
Suppose m C T is a new maximal ideal of residue characteristic p > max(3, k)
with py, reducible. Suppose that N # 1modp, Uy # 1modm. Moreover if
2 <k <p-—1, suppose p JL(0,w* 1wP=*). Then

dimg, Hy, (Yo(N)g, Up)lm] = dimg, Hp, (Yo(N)g, 0p) /mH, (Yo(N)g, 0p) = 2.

par

Under these hypotheses the ring Ty, is Gorenstein.

5. Companion forms

We begin by recalling some results of Section 2; this will also serve to review
our earlier notation. For a positive integer N denote by ¢: E — Y;(N) the
universal elliptic curve. Set ¥, = Symm*~?(R'¢.Z;) and 9, = 9,/p0,. Let
T be the weight k Hecke algebra for I'y(N). Suppose m C T is a maximal
ideal with residue field k = k[m)] of characteristic p, (p, N} = 1. By the duality
between the Hecke algebra and cusp forms, m corresponds to a normalized cusp
form f = Y77 | anq™ of weight k for '} (N) with coefficients in the finite field k.
We assume that the representation pm: Gal (Q/Q) — GL(2,k) is irreducible.
Then by the Multiplicity One Theorem {Theorem 2.1), if p > k then V = V, =
Hl.(Y1i(N )g 9,)" [m] is isomorphic to the k[Gal (Q/Q)]-module determined by
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pm. Moreover the Gal (@p /Qp)-representation V is crystalline. The F-crystal
M = My, corresponding to the dual of V' has a canonical filtration

(66) Mua=M=F'>F150
with F*=1 2 §,(T(N))[m} = H°(Xo,w®*(—cusps))[m] and
FO/F*=1 = § (D' (N))*[m] = H%(Xo,w®*(—cusps))[m] = H(Xo,w®?*)[m]

by Serre Duality. There are maps ¢*~': F*~1 — M and % FO/F*-! — M.
By definition the maximal ideal m in the Hecke algebra T is ordinary if Tr ¢© # 0,
i.e. if and only if ¢°(F°) € F*¥~1. In this case there is an exact sequence

(67) 0 — (°(F)) 2 k{0} — M — M/(¢°(F")) = k{k — 1} —0.
Hence if m is ordinary there is an exact sequence of Gal(Q,/Q,)-modules
(68) 0— ax* ! —V—3-—0,

where y is the p—cyclotbmic character and «, § are unramified. Furthermore we
see that the exact sequence (67) is split if and only if *~1(FF~1) C Fk~1. For
in this case F*~! is the complement. Of course note that the sequence (68) is
split if and only if the Gal (@p /Qp)-module V is tamely ramified. Hence we have
the following criterion:

LEMMA 5.1: py, is tamely ramified at p if and only if o*~1(f) € F*1.

The criterion for p,, to be tamely ramified at p provided by Lemma 5.1 is vir-
tually tautological. However Serre conjectured ([16]) that whether pp, is tamely
ramified is detected by the existence of “companion forms” to f. This conjecture
was recently proven by Gross ([9]). Serre’s criterion is as follows:

THEOREM 5.2: (Gross) Suppose p > max(3, k) and ap, # 0. Then py, is tamely
ramified at p if and only if there is a normalized eigenform g = Y b,q™ of weight
k' = p+1—k for Ty(N) over k such that n*b, = na, for alln > 1.

The pair of forms (f, g) as in the above theorem are called companion forms.
This relationship is equivalently expressed as py @ x = py ® x*.

Gross’s proof reduces the question concerning forms modp of weight & on
I'1(N) to forms of weight 2 on I';(Np). As a further illustration of crystalline
techniques applied to forms of higher weight we give in this section a direct proof
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of Theorem 5.2. In many ways it is simpler to work with good reduction and
higher weight rather than bad reduction and weight 2. We do however note that
Gross’s proof also yields the case p = k provided a?, # ¢(p) whereas crystaliine
methods do not directly apply here. The techniques of Abrashkin [1] might help
however for a crystalline treatment of this limiting case.

One direction of Theorem 5.2 is easy. Suppose a companion form ¢ to f exists.
Then by definition there is a form g of weight k' = p+ 1 — k on I'{ (V) such that

pr = pg ® x*1. Then as in (68) there are exact sequences

(69) 0—ay" ! — Vi—p—0 «, 3 unramified,
(70) 0—a'x* ' —V,— 3 —0 o, 3 unramified.
Twisting the latter sequence (70) by x*~! gives

(71) 0—o —V,0x" 1=V, —gx*"1 —0.

Since p>k>2a #ax* ' Hencea=0,8=0',and V; = ax* ' & 4.

The other direction of Theorem 5.2 is the substantial implication. In light of
Lemma 5.1, this is the assertion that if ¢*~1(f) € F*~! then a companion form
to f exists. We shall compute ¢*~1(f)mod F*~1. Let X = X;(N), (p,N) = L.
On the formal completion X° there is a Frobenius lift ®°4 induced by taking
an elliptic curve E to E modulo its p,-subgroup. This ®°td operates on Qx, w,
Ep, etc. respecting filtration. On w, ®°™/p: WP — w is given by 1/e,_; where
ep—1 is the normalized Eisenstein series of weight p — 1 taken modulo p.

Let ¥ C X denote the supersingular locus. For z € ¥, ¢,_; has a simple
zero at x, so u = dep—1(x) € wP! @ Qx(zr) = wPt!(z) makes sense. Such a
u also admits an alternate description. Let E be a supersingular elliptic curve
over a perfect field of characteristic p. Then Frob, acting on H/  (E) induces
an isomorphism HY(E, Og)? = w™? %> T'(E, Qp) = w. This isomorphism is
multiplication by wu, at least up to a factor independent of E. Let ® be a local
Frobenius lift near a supersingular point. The assertion follows from the relation
in characteristic p, Vo ®* = d®* oV = 0.

For applying this to a class z in H},(E) which locally generates H'(E, OF):

d*z=¢, 1 2+w(z), forwe(E Q)

and hence V®*z = de,_; - z + Vw(z). Calculating modulo T'(E,}), we have
Vw(z) = (Kodaira-Spencer) x w, and hence w(z) = —de,_1(z) using Kodaira-

Spencer.
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For a more precise notation let ®° be a Frobenius lift near ¥ on X. Then
(®* — °9)(2) = p(9z) modp?,

where 8 is a Frobenius-linear derivation on an open subset contained in the
ordinary locus of Xy = X xF,. We want to determine its poles along . If z €

QSS *
and z is a local coordinate near x then (@) (dz) is regular at x. But
p
(@ord)* _(dz)? _ (dz)? _ dz
’ (dz) = =1 = gl = 2,0 + (lower order terms) mod p;

here u is the leading term of e,_;. We shall see that ®°*(2) modp? has at

dz

most simple poles, so it follows that d(9z) = — e

mod(p, regular) and therefore
8z = -+ + (regular) .

We now check that 8 has at most simple poles, i.e., that ®°'(z) mod p? has at
most a simple pole. For this let w be a local coordinate at Frob(z). Then locally

Xo{p) C X x X is defined by an equation g(z,w) with
g(z,w) = (2P — w)(z — wP) modp.

Let pry, pry: X x X — X denote projection onto the first and second fac-
tors, respectively. The p,-type subgroup defines a rational section of pr, and
®°™d is given by composing with the second projection. In other words in local
coordinates we have g(z, ®°*4(2)) = 0 and ®°™(z) = 2P mod p, so

g(z, ®°"(2)) = (8°74(2) — 2P)(z — ®°"4(2)P) + (terms regular in z) mod p.
g):d(—z)~—zp(z - z”z) is regular mod p.

Finally we consider f € TI'(Xg,w*) & I'(Xo,w* 2 ® Q}(c0)). Recall that
£ = R'My crys(0). The element f defines a class in HY (Yo, Symm*~2(€)),
which is in F*1. We want to compute ¢*~!(f)modF?!, which is in
HY(Xo, w?~*). It suffices by Serre Duality to compute the product (¢*~1(f), 8)
for B € T(Xy, w*~2®Q), i.e., 8 a cusp form. We need explicit computations in
the de Rham complex Symm *~2(£) —» Symm ¥~2(£) ® Q! (o) in order to give
a represention of ¢*~1(f). Firstly note the formulas for a function h:

Therefore

(72) h(z+t)—h(z) = +—(2)=
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= 1h t")

(73) h(z + t)d(z + t) - h(z)dz = ( AT (S
1 .

which it suffices to check for h(z) = z™. The same formulas hold for sections of a
bundle with integrable connection, replacing 8/8z by V(8/9z). Let us consider
this in some generality.

Suppose V is Zjy or an unramified extension, C' = U; U U; is an open affine
cover, and E is a Frobenius-crystal on C. This means that there is a connec-
tion V: E — EQ® Qé‘/v’ which is integrable as the dimension is 1. Also, if
®; is a Frobenius-lift on the formal scheme U; (i=1,2), then we have ®;-linear
¢i: E|U; — E|U; which is parallel. Set U; 5 = U; N U, and let D be the divided
power hull for Uy 2 — U; xy Ua. We can define crystalline cohomology either by
the total complex associated to

(74) (B @0y, ) @ (Bl 0 0),) — E(012) @0,
or by the total complex associated to
(1) (B eat,) e (Bl e 9y,) — BDUxv U2)) ® Q8 v,

The complex (75) maps to the complex (74). The first complex (74) is smaller,
while the second (75) has Frobenius action (g1, w2, p1 Xy w2). If a €
[(C,E ® Q') is a 1-form, we get a l-cocycle in the first complex (74) with
components (a|U;, a|Uz, 0), the 0 being in the (1,2)-component. Let z be a
local coordinate on Uj 2, 2; = pry(z) which is then a function on U; xy Us, and

8, = 8/0z. Lift to a 1-cocycle in the second complex (75) as follows:

R o . (21 — 2!
(76) a|Uy, a|Us, ZPI'Q(V((?Z) Z(az)a)w ’

n=0

where the interior multiplication (i.e., contraction) i(3,)a is sometimes also

denoted (8., o). This is closed since

(1) erife) —pri(@) =¥ (Z pT;(V(az)"_li(az)a)M>
n=1

n!

on D(Uy xv Usz). Now apply Frobenius to all components to deduce that Frob*(«)
is given by the 1-cocycle:

< 2 s 21) — yA ntl
(78) (so;(awl), ei(all), 3 ries(9(0.)"i(0.)a) P12 22l )

n=0
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If we map to the first complex and divide by F}{(H}g(E)) = Im(T(C, E @ Q1)),
i.e., map to H(C, E) (usual cohomology), only the third component survives
and gives a Cech 1-cocycle.

Now in our case « is a section f of w®* = w® =2 @ Q! C Symm*~2(E) @ QL.

From equation (77) we get

(1) wilH)-eiH)=7 (Z eV ) ;!%(3))"> .

We need in fact Frob* /p*~!. Note that Frob* on V(9,)""!f is only
divisible by pk=2-(»=1) = pk—n=1if n < k — 1, respectively p° if n > k — 1.

But {¢1(2z) — pa(z )” 1s divisible by p”, and for n! we need a p only if n > p, etc.
902

So the nth term in has p-exponent

o0

(80) —(k—1)+max(k—n—1,0)+n—ZL—)n;].

v=1
Forn <k —1thisis 0. Forn > k — 1 this is

n+1—k—2[§]>n+1—k— "
v=1

p—1

As k < p, the minimum is obtained at n = k where we obtain 1 — p—f—l > 0.
Hence these terms are all congruent to 0 modp. Finally o3 respects filtration,
so mod F! only the term V(3,)*~2%i(8,)f survives. Also modulo F! this is (up
to a factor) given by multiplication using the Kodaira-Spencer class—see the
beginning of Section 1.

Now the product (¢*~1(f), ) is equal to the sum of the residues at ¥, after
multiplication with 3; see [8]. By the black magic of crystalline cohomology (cf.
equation (76)) we have have to pair the term inside V( ) with 8 and compute
residues. We only need its value modulo F'!. Hence finally

- IPB
(81) B =3 @)
€Y
where again u is the leading term of e,_;.

Now ¢*~1(f) € F! if and only if {(¢*~1(f), B) = 0 for all cusp forms 3. By
Equation 81 this occurs exactly when

Res( = f :
;: esa( 32 le,, 1) 0 foralg
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But using the Residue Theorem and Serre Duality this happens if and only if there

2=k} such that v has a simple pole at x € T with residue

exists v € [pero{ Xo, w
equal to that of fP/u*~'e,_; and no other singularity. Multiplying by e,_1 we
see that this is equivalent to the claim that there exists g € I'(Xg, wPT17*) which
at ¥ has the same values as fP/u*~!. The values of g on ¥ uniquely determine
it; otherwise for two such their difference would be divisible by the Eisenstein
series and so have negative degree. The Hecke cigenvalues of g for Ty, £ # p,
are uniquely determined. Namely if f has eigenvalues a¢, € # p then a priori
by Hecke equivariance g has eigenvalues a} / ¢5=1. This also holds for T, by the
crystalline theory. Thus pg is determined. If we let ¢ denote Frobenius, then in
fact pg = pfogy-w-1. This shows that p, is irreducible and therefore g is a cusp
form. So twisting by the inverse of Frobenius ¢ determines a companion form to

f. concluding the proof.
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